Comparison of laser ablation and ion beam efficiency for contactless space debris deorbiting from a quasi-circular orbit


DOI: 10.34759/trd-2022-127-01

Аuthors

Ledkov A. S.*, Belov A. A.**, Tchannikov I. A.***

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia

*e-mail: ledkov@inbox.ru
**e-mail: aleshabelov2001@mail.ru
***e-mail: ilya-tch2001.ru@yandex.ru

Abstract

The article deals with the problem of space debris removal from the near-Earth orbits. The motion of mechanical system, consisting of a spacecraft and an object of space debris sphere, is under study. Active spacecraft is a material point, while space debris is of a spherical shape moves moves on a circular orbit. In the first case, the contactless transportation of space debris is being realized by the laser, and in the second case, an electrojet engine jet is used. It is assumed that in the process of the ion transportation, the entire ion beam hits the surface of the sphere, and a simplified auto-similar model of plasma propagation is used to describe the far region of the electrojet engine plume. In the case transportation by laser, the laser beam control system ensures a point selection on the sphere, for which the normal is directed along the local horizon. The purpose of the study consists in comparing these transportation methods effectiveness in terms of the fuel rate of the active spacecraft. For this purpose, mathematical model of the mechanical system is being developed, and numerical simulation of the descent is performed. The numerical modeling results revealed that the laser ablation method appeared more effective compared to the ion transportation. It is associated with the fact that the force generated by the laser ablation effect appears greater than that generated by the ion beam. Besides, the engine generating the ion beam creates thrust, which should be compensated by the oppositely directed engine. It is supposed in the development of this work to account for the effect of aerodynamic drag forces acting of the active spacecraft and a space debris object, as well as studying special motion of the system and developing control law for the active spacecraft to sustain the required position out of the orbit plane.

Keywords:

space debris removal, contactless deorbiting, laser ablation, ion beam, fuel costs

References

  1. Veniaminov S.S., Chervonov A.M. Kosmicheskii musor — ugroza chelovechestvu (Space debris is a threat to humanity), Moscow, Izd-vo Instituta kosmicheskikh issledovanii RAN, 2012, 192.
  2. Kessler D.J., Cour‐Palais B.G. Collision frequency of artificial satellites: the creation of a debris belt, Journal of Geophysical Research: Space Physics, 1978, vol. 83, no. A6, pp. 2637-2646. DOI:10.1029/JA083IA06P02637
  3. Shan M., Guo J., Gill E. Review and comparison of active space debris capturing and removal methods, Progress in Aerospace Sciences, 2015, vol. 80, pp. 18–32. DOI:10.1016/j.paerosci.2015.11.001
  4. Pikalov R.S., Yudintsev V.V. Trudy MAI, 2018, no. 100. URL: http://trudymai.ru/eng/published.php?ID=93299
  5. Larouche B.P., Zhu Z.H. Autonomous robotic capture of non-cooperative target using visual servoing and motion predictive control, Autonomous Robots, 2014, vol. 37, pp. 157-167. DOI:10.1007/s10514-014-9383-2
  6. Zhai G., Zhang J., Yao Z. Circular orbit target capture using space tether-net system, Mathematical Problems in Engineering, 2013, vol. 2013 (4), DOI:10.1155/2013/601482
  7. Reed J., Barraclough S. Development of harpoon system for capturing space debris, 6th European Conference on Space Debris, 2013, vol. 723, pp. 174.
  8. Aslanov V.S., Alekseev A.V., Ledkov A.S. Trudy MAI, 2016, no. 90. URL: https://trudymai.ru/eng/published.php?ID=74644
  9. Ashurbeili I.R., Lagovier A.I., Ignat’ev A.B., Nazarenko A.V. Trudy MAI, 2011, no. 43, URL: https://trudymai.ru/eng/published.php?ID=24856
  10. Bombardelli C., Pelaez J. Ion beam shepherd for contactless space debris removal, Journal of guidance, control, and dynamics, 2011, vol. 34, no. 3, pp. 916-920. DOI:10.2514/1.51832
  11. Aslanov V.S. Exact solutions and adiabatic invariants for equations of satellite attitude motion under Coulomb torque, Nonlinear Dynamics, 2017, vol. 90, issue 4, pp. 2545-2556. DOI: 10.1007/s11071-017-3822-5
  12. Aslanov V.S. Gravitational trap for space debris in geosynchronous orbit, Journal of Spacecraft and Rocket, 2019, vol. 56, no. 4, pp. 1277-1281. URL: https://doi.org/10.2514/1.A34384
  13. Ziganshin B.R., Sochnev A.V. Vestnik MGTU im. N.E. Baumana. Mashinostroenie, 2021, no. 1, pp. 20-52. DOI: 10.18698/0236-3941-2021-1-20-52
  14. Phipps R., Bonnal S. A spaceborne, pulsed UV laser system for re-entering or nudging LEO debris, and re-orbiting GEO debris, Acta Astronautica, 2016, vol. 118, pp. 224-236. DOI: 10.1016/j.actaastro.2015.10.005
  15. Rezunkov Yu.A. Priroda, 2017, no. 4, pp. 3-13.
  16. Soulard R. et al. ICAN: A novel laser architecture for space debris removal, Acta Astronautica, 2014, vol. 105, no. 1, pp. 192-200. DOI:10.1016/j.actaastro.2014.09.004
  17. Martinez N. et al. Debris collision mitigation from the ground using laser guide star adaptive optics at mount Stromlo observatory, Journal of Space Safety Engineering, 2022, vol. 9, no. 1, pp. 106-113. URL: https://doi.org/10.1016/j.jsse.2021.10.007
  18. Sakai D. et al. Contactless attitude control of an uncooperative satellite by laser ablation, Acta Astronautica, 2022, no. 196, pp. 275-281. DOI:10.1016/j.actaastro.2022.04.024
  19. Alpatov A.P. et al. Tekhnicheskaya mekhanika, 2015, no. 2, pp. 37–48.
  20. Cichocki F., Merino M., Ahedo E. Spacecraft-plasma-debris interaction in an ion beam shepherd mission, Acta Astronautica, 2018, vol. 146, pp. 216-227. DOI:10.1016/j.actaastro.2018.02.030
  21. Alpatov A.P., Maslova A.I., Khoroshilov S.V. Beskontaktnoe udalenie kosmicheskogo musora ionnym luchom. In International Book Market Sevice Ltd, member of OmniScriptum Publishing Group, Beau Bassin, 2018, 331 p.
  22. Nadiradze A.B., Obukhov V.A., Pokryshkin A.I., Popov G.A., Svotina V.V. Izvestiya RAN. Energetika, 2016, no. 2, pp. 146-147.
  23. Khoroshylov S. Out-of-plane relative control of an ion beam shepherd satellite using yaw attitude deviations, Acta Astronautica, 2019, vol. 164, pp. 254-261. DOI:10.1016/j.actaastro.2019.08.016
  24. Khoroshylov S. Relative control of an ion beam shepherd satellite in eccentric orbits, Acta Astronautica, 2020, vol. 176, pp. 89-98. DOI:10.1016/j.actaastro.2020.06.027
  25. Ryazanov V.V. Trudy MAI, 2019, no. 107. URL: https://trudymai.ru/eng/published.php?ID=107837
  26. Aslanov V.S., Ledkov A.S. Fuel costs estimation for ion beam assisted space debris removal mission with and without attitude control, Acta Astronautica, 2021, vol. 187, pp. 123-132. DOI:10.1016/j.actaastro.2021.06.028
  27. Bombardelli C. Relative dynamics and control of an ion beam shepherd satellite. In book: Spaceflight mechanics, 2012, pp. 2145-2158.
  28. Kluever C.A. Space flight dynamics, John Wiley & Sons, 2018, 592 p.

  29. Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход