Selection of the rational composition of the radio information sensor group of a spatially distributed monitoring system


DOI: 10.34759/trd-2022-127-15

Аuthors

Kazantsev A. M.1*, Knysh M. V.2**, Makarov M. K.2***

1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. Higher Military School of Air Defense, 28, Moskovsky avenue, Yaroslavl, 150001, Russia

*e-mail: kazantsev.andrei@gmail.com
**e-mail: mariku2713@mail.ru
***e-mail: mr.pnsh@mail.ru

Abstract

In many application domains, group control problems arise under counteracting conditions. Examples are interaction processes of systems with conflicting and sometimes antagonistic target functions, such as a spatially distributed monitoring system (SDMS) and mobile airborne objects (MAO) penetrating into the system’s area of responsibility.

However, in practice the resource of the SDMS, which determines the space review capabilities, can be limited, including due to low efficiency of ground-based radio information sensors (RIS) in detecting moving air objects at low altitudes. The specified problem can be solved by inclusion into the SDMS of mobile airborne RIS and joint application of airborne and ground-based RIS under unified control.

Thus one of the most important tasks is the fullest realization of information possibilities of all RIS for the purpose of the maximum coverage of their working zones of airspace. The solution of this problem is possible at the expense of estimation of composition and forecasting of ways of actions and tactics of application of MAO with the purpose of definition of rational structure of heterogeneous grouping of RIS of SDMS.

In the article a new methodical approach to the choice of rational composition of heterogeneous grouping of RIS of SDMS is proposed. In a basis of the offered decision methods of the theory of dynamic graphs and methods of vector discrete optimization are put. Features of formation of variants of structure of grouping of RIS are considered. An algorithm is offered, allowing on the basis of the minimum set of attributes of the adversary to choose a rational composition of heterogeneous grouping of RIS in accordance with the hierarchy of links «attributes of the of the opposing side’s activity — stages of preparation for use of MAO — variants of use of MAO».

Keywords:

monitoring system, radio information sensors, rational composition, hierarchical graph, approximate solution, feature space

References

  1. Galyaev A.A., Maslov E.P., Yakhno V.P., Abramyants T.G. Upravlenie bol’shimi sistemami, 2019, no. 79, pp. 112-184. DOI: 10.25728/ubs.2019.79.5
  2. Zhang Z., Wu J., Dai J., He C. A Novel Real-Time Penetration Path Planning Algorithm for Stealth UAV in 3D Complex Dynamic Environment, IEEE Access, 2020, vol. 8, pp. 122757-122771. DOI: 10.1109/ACCESS.2020.3007496
  3. Sysoev L.P. Problemy upravleniya, 2010, no. 6, pp. 64–70.
  4. Sokolov S.V., Sakharova L.V., Manin A.A. Problemy upravleniya, 2018, no. 6, pp. 73–82.
  5. Korepanov V.O., Novikov D.A. Problemy upravleniya, 2011, no. 5, pp. 66–73.
  6. Korepanov V.O., Novikov D.A. Problemy upravleniya, 2015, no. 2, pp. 38–44.
  7. Arapov O.L., Zuev Yu.S. Vestnik MGTU im. N.E. Baumana. Ser. Priborostroenie, 2015, no. 3, pp. 14–22.
  8. Efremov A.Yu., Legovich Yu.S. Problemy upravleniya, 2019, no. 3, pp. 72–80. DOI: 10.25728/pu.2019.3.8
  9. Volkhonskii V.V., Malyshkin S.L. Informatsionno-upravlyayushchie sistemy, 2015, no. 3, pp. 70–76.
  10. Fan F., Ji Q., Wu G., Wang M., Ye X., Mei Q. Dynamic Barrier Coverage in a Wireless Sensor Network for Smart Grids, Sensors, 2019, vol. 19, no. 1, pp. 41. DOI: 10.3390/s19010041
  11. Liu B., Dousse O., Wang J., Saipulla A. Strong barrier coverage of wireless sensor networks, Proceedings of the 9th ACM international symposium on Mobile ad hoc networking and computing, 2008, pp. 411-420. DOI: 10.1145/1374618.1374673
  12. Luo J., Zou S. Strong -Barrier Coverage for One-Way Intruders Detection in Wireless Sensor Networks, International Journal of Distributed Sensor Networks, 2016, vol. 12, no. 6, pp. 16. DOI: 10.1155/2016/3807824
  13. Tyapkin V.N., Fomin A.N., Garin E.N. et al. Osnovy postroeniya radiolokatsionnykh stantsii radiotekhnicheskikh voisk (Fundamentals of Construction of Radar Stations of Radio Engineering Forces), Krasnoyarsk, Sibirskii federal’nyi universitet, 2011, 536 p.
  14. Bakulev P.A. Radiolokatsionnye sistemy (Radar systems), Moscow, Radiotekhnika, 2015, 440 p.
  15. Zeng X.L. Coverage-Optimized Deployment Research for Maximizing the Sensor Network Coverage, Applied Mechanics and Materials, 2015, vol. 713–715, pp. 1137–1140. DOI: 10.4028/www.scientific.net/amm.713-715.1137
  16. Serebryakov Yu.I., Sagaev N.K., Ganiev A.N., Sagaev N.N. Nauchnaya mysl’, 2020, vol. 12, no. 2-1(36), pp. 71-75.
  17. Sagaev N.K., Boiko S.V., Tamp N.V., Sagaev N.N. Nauchnaya mysl’, 2021, vol. 17, no. 3-1(41), pp. 106-112.
  18. Kochkarov A.A., Kochkarov R.A., Malinetskii G.G. Zhurnal vychislitel’noi matematiki i matematicheskoi fiziki, 2015, no. 55(9), pp. 1623–1629. DOI 10.7868/S0044466915090094
  19. Harary F., Gupta G. Dynamic Graph Models, Mathematical and Computer Modelling, 1997, vol. 25, no. 7, pp. 79–87. DOI: 10.1016/S0895-7177(97)00050-2
  20. Aldokhina V.N., Dem’yanov A.V., Gudaev R.A., Byk V.S., Vikulova Yu.M. Trudy MAI, 2017, no. 93. URL: https://trudymai.ru/eng/published.php?ID=80373
  21. Korte B., Figen I. Kombinatornaya optimizatsiya. Teoriya i algoritmy (Combinatorial optimization. Theory and algorithms), Moscow, MTsNMO, 2015, 720 p.
  22. Shennon K. Raboty po teorii informatsii i kibernetike (Works on information theory and cybernetics), Moscow, Inostrannaya literatura, 1963, 832 p.
  23. Bykova V.V., Kataev A.V. Programmnye produkty i sistemy, 2016, no. 2, pp. 172–178. DOI: 10.15827/0236-235X.114.172-178
  24. Kul’bak S. Teoriya informatsii i statistika (Information Theory and Statistics), Moscow, Nauka, 1967, 408 p.
  25. Kolesnikova S.I. Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitel’naya tekhnika i informatika. Obrabotka informatsii, 2009, no. 1(6), pp. 69-80.
  26. Korenevskii N.A., Aksenov V.V., Rodionova S.N., Gontarev S.N., Lazurina L.P., Safronov R.I. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Upravlenie, vychislitel’naya tekhnika, informatika. Meditsinskoe priborostroenie, 2022, vol. 12, no. 3, pp. 80–96. DOI: 10.21869/2223-1536-2022-12-3-80-96
  27. Golomazov A.V. Trudy MAI, 2019, no. 106. URL: https://trudymai.ru/eng/published.php?ID=105738

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход