Investigation of the frequency characteristics of the motion of a thin-walled cylindrical shell with a low added mass taking into account torsional vibrations


DOI: 10.34759/trd-2023-129-06

Аuthors

Dobryshkin A. Y.*, Sysoev O. E.**, Sysoev E. O.**, Petrov V. V., Bormotin K. S.

Komsomolsk-na-Amure State University, 27, Lenina str., Komsomolsk-on-Amur, 681013, Russia

*e-mail: wwwartem21@mail.ru
**e-mail: fks@knastu.ru

Abstract

The destruction of shell structures is a rare man-made disaster that occurs for numerous reasons. When designing shell-type structures, calculations are made for strength and stability, operating modes are taken into account, and real calculations are not made for the occurrence of the resonance phenomenon, which thin-walled shell structures are subject to. This happens due to the discrepancy between the existing mathematical models and the behavior of real structures. To combat the phenomenon of resonance, designers usually increase the safety margins when calculating shells, which increases the cost of objects, but does not completely solve the problem. In most cases, this resonance phenomenon is combated by strengthening the structures, which leads to an increase in the material consumption and cost of the structures. Antiresonant devices are used extremely rarely, despite their low cost, since the available mathematical models do not accurately describe the process of vibrations of cylindrical shells. And without accurate mathematical models, it is impossible to control antiresonance devices. In this paper, the authors refined the computational model of the process of vibrations of a shell of small length (ring) carrying a small added mass, taking into account torsional vibrations, and experimentally verified the model obtained. The study is a consideration of the contour, which in this case can be represented as a cylindrical shell of small length (ring). Quite logical is the criterion of the oscillatory motion of this shell, namely, changes in the radius in the course of vibrations. Based on the data obtained, it can be concluded that the vibrations of the shell, in this case, radial and torsional vibrations predominate, are classified as high-frequency vibrations.

Keywords:

vibrations, thin-walled shell, torsional vibrations, small added mass

References

  1. Kubenko V.D., Koval’chuk P.S., Krasnopol’skaya T.S. Nelineinoe vzaimodeistvie form izgibnykh kolebanii tsilindricheskikh obolochek (Nonlinear interaction of shapes of cylindrical shells bending vibrations), Kiev, Naukova dumka, 1984, 220 p.
  2. Dobryshkin A.Yu., Lozovskii I.V., Sysoev O.E., Sysoev E.O. Trudy MAI, 2023, no. 128. URL: https://trudymai.ru/eng/published.php?ID=171385. DOI: 10.34759/trd-2023-128-04
  3. Guseva Zh.I. Uchenye zapiski Komsomol’skogo-na-Amure gosudarstvennogo tekhnicheskogo universiteta, 2021, no. 4 (52), pp. 99-104. DOI: 10.17084/20764359-2021-52-99
  4. Gholami Iman, Amabili Marco, Paidoussis Michael P. Dynamic divergence of circular cylindrical shells conveying airflow, Mechanical systems and signal processing, 2022, vol. 166 (1), pp. 108496. DOI:10.1016/j.ymssp.2021.108496
  5. Dobryshkin A.Y., Sysoev E.O., Sysoev O.E. Determination of the influence of reinforcement direction of open thin-walled cylindrical carbon shells on their natural vibrations, IOP Conference Series: Earth and Environmental Science, 2022, vol. 928, pp. 052055. DOI: 10.1088/1755-1315/988/5/05205
  6. Sysoev O.E., Dobrychkin A.Yu. Natural vibration of a thin desing with an added mass as the vibrations of a cylindrical shell and curved batten, Journal of Heilongjiang university of science and technology, 2018, vol. 28, no. 1, pp.75-78.
  7. Qu, Y. Chen, X. Long, H. Hua, and G. Meng. Free and forced vibration analysis of uniform and stepped circular cylindrical shells using a domain decomposition method, Applied Acoustics, 2013, vol. 74, no. 3, pp. 425-439
  8. Foster N., Fernández-Galiano L. Norman Foster: in the 21st Century, AV, Monografías, Artes Gráficas Palermo, 2013, pp. 163–164.
  9. Iman Gholami, Marco Amabili, Michael P. Païdoussis. Experimental parametric study on dynamic divergence instability and chaos of circular cylindrical shells conveying airflow, Mechanical Systems and Signal Processing, 2022, no, 169 (3), pp. 108755. DOI:10.1016/j.ymssp.2021.108755
  10. Belostochnyi G.N., Myl’tsina O.A. Trudy MAI, 2015, no. 82. URL: http://trudymai.ru/eng/published.php?ID=58524
  11. Kuznetsova E.L., Tarlakovskii D.V., Fedotenkov G.V., Medvedskii A.L. Trudy MAI, 2013, no. 71. URL: http://trudymai.ru/eng/published.php?ID=46621
  12. Feoktistov S.I. Uchenye zapiski Komsomol’skogo-na-Amure gosudarstvennogo tekhnicheskogo universiteta, 2021, no. 1 (49), pp. 76-82. DOI: 10.17084/20764359_2021_49_76
  13. Kanashin I.V., Grigor’eva A.L., Khromov A.I., Grigor’ev Yan.Yu., Mashevskii V.A. Uchenye zapiski Komsomol’skogo-na-Amure gosudarstvennogo tekhnicheskogo universiteta, 2021, no. 3 (51), pp. 39-41. DOI: 10.17084/20764359-2021-51-39
  14. Nushtaev D.V., Zhavoronok S.I., Klyshnikov K.Yu., Ovcharenko E.A. Trudy MAI, 2015, no. 82. URL: http://trudymai.ru/eng/published.php?ID=58589
  15. Grushenkova E.D., Mogilevich L.I., Popov V.S., Popova A.A. Trudy MAI, 2019, no. 106. URL: http://trudymai.ru/eng/published.php?ID=105618
  16. Hautsch N., Okhrin O., Ristig A. Efficient iterative maximum likelihood estimation of highparameterized time series models, Berlin, Humboldt University, 2014, 34 p.
  17. Sablin P.A., Shchetinin V.S. Uchenye zapiski Komsomol’skogo-na-Amure gosudarstvennogo tekhnicheskogo universiteta, 2021, no. 3 (51), pp. 104-106. DOI: 10.17084/20764359-2021-51-104
  18. Andrianov I.K. Uchenye zapiski Komsomol’skogo-na-Amure gosudarstvennogo tekhnicheskogo universiteta, 2021, no. 3 (51), pp. 14-20. DOI: 10.17084/20764359-2021-51-14
  19. Ivankova E.P. Uchenye zapiski Komsomol’skogo-na-Amure gosudarstvennogo tekhnicheskogo universiteta, 2021, no 3 (51), pp. 85-89. DOI: 10.17084/20764359-2021-51-85
  20. Evstigneev A.I., Dmitriev E.A., Odinokov V.I., Ivankova E.P., Usanov G.I., Petrov V.V. Uchenye zapiski Komsomol’skogo-na-Amure gosudarstvennogo tekhnicheskogo universiteta, 2020, no. 7 (47), pp. 104-107.
  21. Dmitriev E.A., Potyanikhin D.A., Odinokov V.I., Evstigneev A.I., Kvashin A.E. Matematicheskoe modelirovanie i chislennye metody, 2022, no. 2 (34), pp. 63-77. DOI: 10.18698/2309-3684-2022-2-6377

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход