Interaction of a plane pressure wave with a spherical shell in an elastic medium


DOI: 10.34759/trd-2023-129-08

Аuthors

Thant Z. H.

Defense Services Technological Academy (DSTA), Mandalay-Lashio Highway, Mandalay Division, Pyin Oo Lwin, Myanmar

e-mail: thantzinhein3646@gmail.com

Abstract

This article considers the nonstationary problem of a plane pressure wave impact on a spherical shell in an elastic medium. Both desired and prescribed functions are represented in the form of series by the Lejandre and Hegenbauer polynomials to obtain the analytical solution of the non-stationary diffraction problem of the flat pressure wave on the spherical surface in an elastic medium supported by the thin shell. The solution method is based on the expansion into series on the system of eigenfunctions and application of the Laplace integral transformation in time. As the result, analytical expressions were obtained for all desired functions, which allows studying non-stationary strain-stress state and displacements both on the shell and at any point of the elastic medium.

The problems of elastic waves diffraction on various types of heterogeneities relate to the most difficult and up-to-date problems in the dynamics of deformable bodies. In the applied terms, it is explained by the circumstance that the information on the stress-strain state near these irregularities is of great interest for various purposes. Besides, the presence of heterogeneities (inclusions, cavities, notches, local changes in properties, etc.) is an indispensable condition arising in various fields of modern engineering. Such tasks include the following: creation of new structures, working at dynamic loads, development of new composite materials and their introduction at creation of engineering constructions, modern tasks of geophysics and seismology, and also a number of other tasks of scientific and technical character.

Keywords:

elastic wave diffraction problems, method for solving eigenfunctions, spherical shell in an elastic medium, dynamic stress-strain state

References

  1. Gorshkov A.G., Tarlakovskii D.V. Nestatsionarnaya aerogidrouprugost’ tel sfericheskoi formy (Unsteady aero-hydroelasticity of spherical bodies), Moscow, Nauka. Glavnaya redaktsiya fiziko-matematicheskoi literatury, 1990, 260 p.
  2. Makarevskii D.I., Serdyuk D.O., Fedotenkov G.V. Mekhanika kompozitsionnykh materialov i konstruktsii, 2023, vol. 29, no. 1, pp. 54-68.
  3. Lokteva N.A., Serdyuk D.O., Skopintsev P.D., Fedotenkov G.V., Trudy MAI, 2021, no. 120. URL: https://trudymai.ru/eng/published.php?ID=161423. DOI:10.34759/trd-2021-120-09.
  4. Firsanov V.V., Fam V.T., Chan N.D. Trudy MAI, 2020, no. 114. URL: https://trudymai.ru/eng/published.php?ID=118893. DOI:10.34759/trd-2020-114-07
  5. Fiedler T., Löffler R., Bernthaler T., Winkler R., Belova I.V., Murch Graeme. Numerical analyses of the thermal conductivity of random hollow sphere structures, Materials Letters, 2009, vol. 63, pp. 1125-1127. DOI:10.1016/j.matlet.2008.10.030.1
  6. Zhu B.L., Zheng H., Wang J., Ma Jeffery, Wu Jun, Wu Rongguang. Tailoring of thermal and dielectric properties of LDPE-matrix composites by the volume fraction, density, and surface modification of hollow glass microsphere filler, Composites Part B: Engineering, 2014, vol. 58, pp. 91–102. DOI:10.1016/j.compositesb.2013.10.029
  7. Aristova E.Yu., Denisova V.A., Drozhzhin V.S., Kuvaev M.D. et al. Aviatsionnye materialy i tekhnologii, 2018, no. 1 (50), pp. 52-57. DOI:10.18577/2071-9140-2018-0-1-52-57
  8. Kriven’ G.I. Trudy MAI, 2022, no. 127. URL: https://trudymai.ru/eng/published.php?ID=170333. DOI:10.34759/trd-2022-127-05
  9. Garnier Bertrand, Boudenne Abderrahim. Use of hollow metallic particles for the thermal conductivity enhancement and lightening of filled polymer, Polymer Degradation and Stability, 2016, vol. 127, pp. 113-118. DOI:10.1016/j.polymdegradstab.2015.11.026
  10. Seyed Mohammad Hossein Hosseini, Markus Merkel, Andreas Öchsner. Influence of the joint shape on the uniaxial mechanical properties of non-homogeneous bonded perforated hollow sphere structures, Computational Materials Science, 2012, vol. 58, pp. 183-187. DOI:58.183-187. 10.1016/j.commatsci.2012.01.024
  11. Andreas Öchsner, Thomas Fiedler, Christian Augustin. Metallic hollow spherical structures multifunctional materials for lightweight applications: types, properties and case studies, Springer-Verlag, Berlin Heidelberg, 2009. DOI:10.1007/978-3-642-00491-9
  12. Bhagyashekar M S, Rao R.M.V.G.K. Characterization of Mechanical Behavior of Metallic and Non-metallic Particulate Filled Epoxy Matrix Composites, Journal of Reinforced Plastics and Composites, 2010, vol. 29, pp. 30-42. DOI:10.1177/0731684408095034
  13. Bhagyashekar M.S, Rao Kavaitha, Rao R.M.V.G.K. Studies on Rheological and Physical Properties of Metallic and Non-metallic Particulate Filled Epoxy Composites, Journal of Reinforced Plastics and Composites, 2009, vol. 28, pp. 2869-2878. DOI:10.1177/0731684408093976
  14. Georgarakis Konstantinos, Dudina Dina, Kvashnin Vyacheslav. Metallic Glass-Reinforced Metal Matrix Composites: Design, Interfaces and Properties, Materials, 2022, vol. 15, pp. 8278. DOI:10.3390/ma15238278
  15. Hu Yan, Mei Riguo, An Zhenguo, Zhang Jingjie. Silicon rubber/hollow glass microsphere composites: Influence of broken hollow glass microsphere on mechanical and thermal insulation property, Composites Science and Technology, 2013, vol.79, pp. 64–69. DOI:10.1016/j.compscitech.2013.02.015
  16. Chen Shuisheng, Qin Yan, Song Jiuqiang, Wang Bo. The effect of hollow glass microspheres on the properties of high silica glass fiber fabric/liquid silicone rubber composite sheet, Polimery, 2018, vol. 63, pp.178-184. DOI: 10.14314/polimery.2018.3.2
  17. Yuan Y., Diao S., Zhao C. et al. Preparation of Hollow Glass Microsphere/Organic Silicone Resin Composite Material with Low Dielectric Constant by In-Situ Polymerization, Silicon, 2020, vol. 12, pp. 1417–1423. URL: https://doi.org/10.1007/s12633-019-00234-1
  18. Sanusi Olawale, Oyinlola Adeyinka, Akindapo Jacob. Influence of Wood Ash on the Mechanical Properties of Polymer Matrix Composite Developed from Fibre Glass and Epoxy Resin, International Journal of Engineering Research & Technology, 2013, vol. 2. pp. 344-352. URL: https://doi.org/10.1007/s12633-019-00234-1
  19. Sanusi Olawale, Komolafe Olufemi, Ogundana Tunde, Olaleke Mesach, Sanni Yunusa. Development of Wood,sh/Resin Polymer Matrix Composite for Body Armour Application, FUOYE Journal of Engineering and Technology, 2016, vol.1, no 1, pp. 10-14. URL: https://doi.org/10.46792/fuoyejet.v1i1.4
  20. Dehrooyeh Saman, Vaseghi Majid, Sohrabian Majid, Sameezadeh Mahmood. Glass fiber/Carbon nanotube/Epoxy hybrid composites: Achieving superior mechanical properties, Mechanics of Materials, 2021, vol. 161, pp. 104025. DOI:10.1016/ j.mechmat.2021.104025

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход