Simulation of thermal and erosion processes in a multichannel hollow cathode


DOI: 10.34759/trd-2023-129-09

Аuthors

Cherkasova M. V.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

e-mail: maria-post@mail.ru

Abstract

The article is devoted to the study and modeling of work processes in a multichannel hollow cathode. A similar cathode design is used in various plasma devices and high-current electric rocket engines. The design is relevant for use in electron closed-drift engines or ion engines currently being developed worldwide for use in powerful transport space systems.

The article presents the theoretical foundations of two-dimensional modeling of thermal, electrical and erosion processes in a multichannel packed hollow cathode operating in an arc mode with pumping of plasma-forming gas. The formulated system of equations allows calculating the local and integral characteristics of the cathode based on the minimum possible set of input parameters. Distribution of cathode temperature, current densities in cathode body and plasma channels, plasma-forming gas pressure in channels, concentration of charged and neutral particles are simulated. Also described is a model of erosion processes, which includes processes of evaporation, sputtering, recycling, which makes it possible to calculate local and integral erosion of the cathode.

The article also presents the results of an experimental study of several samples of multichannel cathodes and compares the results of the experiment and design modeling for a number of key parameters: cathode temperature and cathode voltage drop depending on the consumption of plasma-forming gas and discharge current. An important point is the comparison of the results of cathode erosion. The model predicts the voltage-current dependencies and the erosion rate within the 10% of accuracy, while the temperature calculation is affected by an error of about 20%. The results show that the proposed model correctly describes the parameters of the cathode and can be used in the design of this type of cathodes.

Keywords:

hollow cathode, arc discharge, plasma, erosion, sputtering, recycling

References

  1. Delcorix J.L., Minoo H., and Trindade A.R. Gas Fed Multichannel Hollow Cathode Arcs, Review of Scientific Instruments, 1969, vol. 40, pp. 1555-1562. DOI:10.1063/1.1683861
  2. Cassady L.D., Choueiri E.Y. Experimental and theoretical studies of the lithium-fed multi-channel and single-channel hollow cathode, Proc. 29th International Electric Propulsion Conference, Princeton University, 2005. URL: https://alfven.princeton.edu/publications/pdf/cassady-iepc-2005-094.pdf
  3. Cherkasova M.V. Matematicheskoe modelirovanie fizicheskikh protsessov v polom katode (Mathematical modeling of physical processes in a hollow cathode). PhD thesis, Moscow, MAI, 2007, 152 p.
  4. Yanenko N.N. Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki (Method of fractional steps for solving multidimensional problems of mathematical physics), Novosibirsk, Nauka, Sibirskoe otdelenie, 1967, 195 p.
  5. Krainov A.Yu., Min’kov L.L. Chislennye metody resheniya zadach teplo- i massoperenosa (Numerical methods for solving heat and mass transfer problems), Tomsk, STT, 2016, 92 p.
  6. Siegel Robert, Howell John R. Thermal radiation heat transfer, New York, 1972, 372 p.
  7. Guerrero P., Mikellides I.G., Polk J.E., Monreal R.C., Meiron D.I. Critical implications of ion-surface energy accommodation and neutralization mechanism in hollow cathode physics, Journal of Applied Physics, 2021, vol. 130, issue 4. DOI: 10.1063/5.0055824
  8. Mitchner M., Kruger Charls H. Partially ionized gases, John Wiley, 1973, 496 p.
  9. Gavrilova A.Yu., Skorokhod E.P. Secheniya i konstanty skorostei plazmokhimicheskikh reaktsii inertnykh gazov (Cross sections and rate constants of plasma chemical reactions of inert gases), Moscow, Izd-vo MAI, 2011, 192 p.
  10. Chernyi G.G., Losev S.A. Fiziko—khimicheskie protsessy v gazovoi dinamike: spravochnik.. Dinamika fiziko—khimicheskikh protsessov v gaze i plazme (Physico—chemical processes in gas dynamics. Dynamics of physico—chemical processes in gas and plasma), Moscow, Izd-vo Moskovskogo universiteta, 1995, vol. 1, 343 p.
  11. Chernyi G.G., Losev S.A. Fiziko—khimicheskie protsessy v gazovoi dinamike: spravochnik. Fiziko—khimicheskaya kinetika i termodinamika (Physico—chemical processes in gas dynamics. Physico—chemical kinetics and thermodynamics), Moscow, Nauchno—izdatel’skii tsentr mekhaniki, 2002, vol. II, 368 p.
  12. Panevin I.G., Khvesyuk V.I., Nazarenko I.P. et al. Teoriya i raschet prielektrodnykh protsessov (Theory and calculation of near-electrode processes), Novosibirsk, Nauka, 1992, 197 p.
  13. Huddlestone R., Leonard S., Lovberg R. et al. Plasma diagnostic techniques, Academic Press, 1965, 627 p.
  14. Berezko M.E., Nikitchenko Yu.A. Trudy MAI, 2020, no. 110. URL: https://trudymai.ru/eng/published.php?ID=112842. DOI: 10.34759/trd-2020-110-8
  15. Sposobin A.V. Trudy MAI, 2021, no. 121. URL: https://trudymai.ru/eng/published.php?ID=162656. DOI: 10.34759/trd-2021-121-09
  16. Berezko M.E. Trudy MAI, 2022, no. 122. URL: https://trudymai.ru/eng/published.php?ID=164197. DOI: 10.34759/trd-2022-122-09
  17. Sigmund P. Mechanisms and theory of physical sputtering by particle impact, Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms, 1987, vol. 27, pp. 1-20. DOI:10.1016/0168-583X(87)90004-8
  18. Pleshivtsev N.V. Katodnoe raspylenie (Cathod Sputtering), Moscow, Atomizdat, 1968, 344 p.
  19. Alekseev B.V. Issledovanie termodinamicheskikh i perenosnykh svoistv neitral’nykh i ionizovannykh gazov (Study of the thermodynamic and transfer properties of neutral and ionized gases: a thematic collection of scientific works of the institute.), Moscow, MAI, 1979, pp. 45-51.
  20. Kovalev V.M., Lyapin A.A., Urusin M.M. Teplofizika vysokikh temperature, 1978, no. 2, pp. 418‒419. URL: http://mi.mathnet.ru/rus/tvt/v16/i2/p418
  21. Zhukov M.F., Kozlov N.P., Pustogarov A.V et.al. Prielektrodnye protsessy v dugovykh razryadakh (Near-electrode processes in arc discharges), Novosibirsk, Nauka. Sibirskoe otdelenie, 1982, 157 p.
  22. Kashenkov V.I., Kovalev V.N., Lyapin A.A., Pekhterev S.V. XI Vsesoyuznaya konferentsiya «Generatory nizkotemperaturnoi plazmy»: tezisy dokladov. Novosibirsk, Institut teplofiziki SO AN SSSR, 1989, Ch. II, pp. 28‒29.
  23. Zhou X., Heberlein J. An experimental investigation of factors affecting arc-cathode erosion, Journal of Physics D: Applied Physics, 1998, no. 31, pp. 2577‒2590. DOI:10.1088/0022-3727/31/19/031
  24. Eckstein W. Sputtering Yields. In: Sputtering by Particle Bombardment. Topics in Applied Physics, Springer, Berlin, Heidelberg, 2007, vol. 110, pp. 33-187. ‒ DOI:10.1007/978-3-540-44502-9_3
  25. Nuclear Data Section /Atomic International Energy Agency and Molecular Data Unit. URL: https://www-amdis.iaea.org/ALADDIN/
  26. De Tata M., Albertoni R., Rossetti P., Paganucci F., Andrenucci M., Cherkasova M., Obukhov V., Riaby V. 100-hrs Endurance Test on a Tungsten Multi-Rod Hollow Cathode for MPD Thrusters, Proc. 32nd International Electric Propulsion Conference, Wiesbaden, Germany, 2011, 15 p. URL:http://www.scopus.com/inward/record.url?eid=2-s2.0-84880667614&partnerID=MN8TOARS

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход