Strapdown inertial measurement unit shock absorption and damping linear system analysis


DOI: 10.34759/trd-2023-129-20

Аuthors

Maksimov S. A.*, Naumchenko V. P.**, Ilyushin P. A.***, Pikunov D. G.****, Solovyov A. V.

JSC «TsENKI» – «NII PM», Moscow, Russia

*e-mail: S.Maksimov@russian.space
**e-mail: V.Naumchenko@russian.space
***e-mail: P.Ilyushin@russian.space
****e-mail: D.Pikunov@russian.space

Abstract

The presented article considers the result of the dynamic system synthesis describing the amortization and damping system behavior of the strapdown inertial measurement unit for a spacecraft. The "JSC "TsENKI"—"NII PM" In-house design high-accuracy vibration-string accelerometers are employed in the unit as sensitive elements. With account for the internal shock absorption system, these accelerometers may be described as oscillating links with small damping coefficient and finite free movement, which limits their application with external vibrational high-energy impacts. The necessity of extra shock absorbing system introduction to the unit is being dictated by the device readings utilization in the spacecraft control system in all flight modes, including off-nominal ones. This shock absorbing system is also an oscillatory link affecting the shock absorbing system in the accelerometer, and subjected to the response impact from it. As the result, the problem resolves itself into developing a system with the feedbacks encircling oscillatory links with its subsequent analysis. Linear acceleration in the form of a random signal comes to the system input, and the system output is a linear translation, which is necessary to be kept within certain limits.

The JSC "TsENKI"—"NII PM" has the experience in the dynamic system prototype unit resistant to the external mechanical impacts developing. The article considers the process of design, development and analysis of the linear model of the shock absorbing and damping system described in Python language and confirmed the possibility of ensuring the given requirements to the unit sturdiness to the input impacts. As the result, the optimum range of dynamic characteristics of the damping and shock absorbing system was found. The obtained results will be used further for the nonlinear system modeling and its in-depth analysis.

Keywords:

analysis, system, dynamic characteristics, spectrum, vibration, inertial unit, vibrational string accelerometer, Python

References

  1. Sapozhnikov I.N., Neizvestnykh Yu.I., Dukhanin N.N. et al. Prioritet — tochnost (Priority — Precision), Moscow, Restart, 2006, 192 p.
  2. Khar’kov I.A., Shustrov A.D., Selivanova L.M. Vestnik MGTU im. N.E.Baumana. Seriya: Priborostroenie, 2003, no. 4. URL: http://vestnikprib.ru/catalog/bcomm/hidden/400.html
  3. Ilyushin P.A., Naumchenko V.P., Pikunov D.G. 17 molodezhnaya konferentsiya «Novye materialy i tekhnologii v raketno-kosmicheskoi aviatsionnoi i drugikh vysokotekhnologichnykh otraslyakh promyshlennosti»: sbornik trudov. Moscow, Izd-vo «12 aprelya», 2022, pp. 18-24.
  4. Ivanov A.P. Dinamika sistem s mekhanicheskimi soudareniyami (Mechanical impact systems dynamics), Moscow, Mezhdunarodnaya programma obrazovaniya, 1997, 336 p.
  5. Kudryavtsev S.I. Trudy MAI, 2018, no. 98. URL: https://trudymai.ru/eng/published.php?ID=90235
  6. Kuporosova E.S., Milekhin L.N., Maksimov E.Yu. Trudy MAI, 2013, no. 69. URL: https://trudymai.ru/eng/published.php?ID=43143
  7. A.D. Nashif, D.I.J. Jones, J. P. Henderson. Vibration Damping, Wiley, New York, 1991, 480 p.
  8. Sukonkina M.L., Gainov S.I. Trudy NGTU im. R.E. Alekseeva, 2013, no. 4 (101), pp. 311-319.
  9. Kozlov D.I., Anshakov G.P., Mostovoi Ya.A., Sologub A.V. Upravlenie kosmicheskimi apparatami zondirovaniya Zemli. Komp’yuternye tekhnologii (Ground Sensing Spacecraft Operation. Computer technologies), Moscow, Mashinostroenie, 1998, 366 p.
  10. Mogilevich L.I., Popov V.S., Popova A.A. et al. Vestnik MGTU im. N.E. Baumana. Seriya: Priborostroenie, 2022, no. 2 (139), pp. 26–41.
  11. Kriven’ G.I. Trudy MAI, 2022, no. 127. URL: https://trudymai.ru/eng/published.php?ID=170333. DOI: 10.34759/trd-2022-127-05
  12. Podchezertsev V.P., Topil’skaya S.V. Vestnik MGTU im. N.E. Baumana. Seriya: Priborostroenie, 2021, no. 3 (136), pp. 113–128. DOI: 10.18698/0236-3933-2021-3-113-128
  13. Topil’skaya S.V., Borodulin D.S., Kornyukhin A.V. Kosmicheskaya tekhnika i tekhnologii, 2018, no. 3 (22). URL: file:///C:/Users/lenovo/Downloads/03-06(3).pdf
  14. Rosin E.I., Malyshev V.V. Patent SU 507723 A1, 1976.03.25.
  15. Rosin E.I., Bogdanova V.D., Rybkin V.K. Patent SU 557219 A1, 1977.05.05.
  16. Kim D.P. Teoriya avtomaticheskogo upravleniya (Automatic control theory), Moscow, Izd-vo Yurait, 2022, 276 p.
  17. Vul’fson I.I. Kratkii kurs teorii mekhanicheskikh kolebanii (Short course of the vibrations theory), Moscow, VNTR, 2017, 241 p.
  18. Ilyushin P.A., Naumchenko V.P., Maksimov S.A., Pikunov D.G., Solov’ev A.V. 21-ya Mezhdunarodnaya konferentsiya «Aviatsiya i kosmonavtika»: tezisy dokladov. Moscow, Izd-vo «Pero», 2022.
  19. Tarshkhoeva Zh.T. Molodoi uchenyi, 2021, no. no. 5 (347), pp. 20-21.
  20. Mikhailin D.A., Allilueva N.V., Rudenko E.M. Trudy MAI, 2018, no. 98. URL: https://trudymai.ru/eng/published.php?ID=90386
  21. Ovsyannikov G.N. Faktornyi analiz v dostupnom izlozhenii: Izuchenie mnogoparametricheskikh sistem i protsessov (Factor analysis in accessible terms: Multi-parameter systems and processes study), Moscow, Izd-vo LENAND, 2022, 176 p.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход