Method of interception of small and inconspicuous unmanned aerial vehicles


DOI: 10.34759/trd-2023-129-21

Аuthors

Sentsov A. A.1*, Polyakov V. B.1, Ivanov S. A.2, Pomozova T. G.1**

1. Saint Petersburg State University of Aerospace Instrumentation, 67, Bolshaya Morskaya str., Saint Petersburg, 190000, Russia
2. Saint-Petersburg State University of Economics, 21, Sadovaya str., Saint-Petersburg, 191023, Russia

*e-mail: toxx@list.ru
**e-mail: pomozova-tatyana@yandex.ru

Abstract

As of today, the onrush development of the unmanned aviation and of its application scope are observed. Besides the application in economic activity, the scope of the unmanned aviation functions by special services and in military sphere is constantly growing. The small-sized and nearly invisible unmanned aerial vehicles present are of special peril. The problem of low-observable targets detecting, tracking and intercepting for the socially significant objects protecting occurs. The article proposes a method for integration of the unmanned aviation detection, tracking and intercepting managing means, as well as synchronization of the control for these tasks solving. The article presents the description of the open information transfer protocol used in a wireless two-way exchange channel for the interception means control. Classes of possible interception objects and the structure of the complex for the interception process organization are determined. The article proposes scenarios of interception options, and presents their time characteristics as well as describes the options for radar stations that ensure detection of small-sized and low-observable objects with low values of the effective scattering area. The article describes the currently up-to-date task of identifying features of the aerial objects observed by radar for recognition and decision-making with the allocation of classes of artificial and natural origin as well. The article defines methods of useful data extracting from the reflected signals employing a convolutional neural network, and considers two options of neural network structuring, in which the input data is represented as a graphical representation of the spectrum of the reflected signal (in grayscale) and in the form of arrays of numbers.

Keywords:

radar station, unmanned aerial vehicle, unmanned aircraft, detection of aerial objects, neural network

References

  1. Dmitriev V.I., Zvonarev V.V., Lisitsyn Yu.E. Trudy MAI, 2020, no. 112. URL: http://trudymai.ru/eng/published.php?ID=116566. DOI: 10.34759/trd-2020-112-16
  2. Teodorovich N.N., Stroganova S.M., Abramov P.S. Naukovedenie, 2017, vol. 9, no. 1, pp. 1–7.
  3. Massey K., Gaeta R. Noise Measurements of Tactical UAVs, 16th AIAA / CEAS Aeroacoustics Conference, American Institute of Aeronautics and Astronautics, 2010. DOI:10.2514/6.2010-3911
  4. Makarenko S.I., Timoshenko A.V., Vasil’chenko A.S. Sistemy upravleniya, svyazi i bezopasnosti, 2020, no. 1, pp. 109-146. DOI: 10.24411/2410-9916-2020-10105
  5. Gorbulin V.I., Khodor M.A. Trudy MAI, 2018, no. 100. URL: http://trudymai.ru/eng/published.php?ID=9342
  6. Naresh S., Dr.V. Ravi. Aerodynamic Characteristic Analysis of UAV (Unmanned Aerial Vehicle) By Using CFD, International Journal for research in applied science and engineering technology, 2016, vol. 4, issue VIII, pp. 512-518.
  7. Sidorenko K.A. Patent RU2729704C1 RF, 2020-08-11.
  8. Sentsov A.A., Polyakov V.B., Dmitriev V.F. Voprosy radioelektroniki, 2019, no. 9, pp. 31-36. DOI: 10.21778/2218-5453-2019-9-31-36
  9. Sentsov A.A., Polyakov V.B. Mezhdunarodnyi forum «Metrologicheskoe obespechenie innovatsionnykh tekhnologii»: sbornik tezisov. Saint Petersburg, GUAP, 2019, pp. 158-160.
  10. Torvik B., Olsen K. E., Griffiths H. Classification of Birds and UAVs Based on Radar Polarimetry, IEEE Geoscience and Remote Sensing Letters, 2016, vol. 13, no. 9, pp. 1305-1309. DOI:10.1109/LGRS.2016.2582538
  11. Sainath T., Weiss R., Wilson K. et al. Multichannel Signal Processing With Deep Neural Networks for Automatic Speech Recognition, IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2017, pp. 965-979. DOI:10.1109/TASLP.2017.2672401
  12. Shimamura T., Nguyen N. Autocorrelation and double autocorrelation based spectral representations for a noisy word recognition system, INTERSPEECH 2010, 11th Annual Conference of the International Speech Communication Association, 2010, pp. 1712-1715. DOI:10.21437/Interspeech.2010-492
  13. Sentsov A.A., Polyakov V.B., Gladkii N.A. Electronic Methods to Protect Unmanned Aerial Vehicles from Seizing Control, Wave Electronics and its Application in Information and Telecommunication Systems (WECONF), IEEE: Piscataway, NJ, USA, 2018, pp. 331-334. DOI: 10.1109/WECONF.2018.8604463
  14. Y.-M. Kwon, J. Yu, B.-M. Cho et al. Empirical analysis of MAVLink protocol vulnerability for attacking unmanned aerial vehicles, IEEE Access, 2018, vol. 6, pp. 203–212. DOI:10.1109/access.2018.2863237
  15. Ananenkov A.E., Marin D.V., Nuzhdin V.M. et al. Trudy MAI, 2016, no. 91. URL: https://trudymai.ru/eng/published.php?ID=75662
  16. Guseinov A.B., Makhovykh A.V. Trudy MAI, 2016, no. 90. URL: http://trudymai.ru/eng/published.php?ID=74833
  17. Sel’vesyuk N.I., Veselov Yu.G., Gaidenkov A.V., Ostrovskii A.S. Trudy MAI, 2018, no. 103. URL: http://trudymai.ru/eng/published.php?ID=100782
  18. Sentsov A.A., Ivanov S.A., Kostenko D.A. Application of cognitive technologies in solving the recognition task, XXIV International Conference «Wave Electronics and its Application in Information and Telecommunication Systems» (WECONF-2022), Saint Petersburg, Russia, 2022, pp. 1-4. DOI:10.1109/WECONF55058.2022.9803328
  19. Sentsov A.A., Petrov I.D., Ivanov S.A. Feature extraction and recognition of aerial objects using echo signals received by radar, XXIII International conference «Wave Electronics and its Application in Information and Telecommunication Systems» (WECONF-2021), Saint Petersburg, Russia, 2021, pp. 1-4. DOI: 10.1109/WECONF51603.2021.9470565
  20. Koshkin R.P. Bespilotnye aviatsionnye sistemy (Unmanned aircraft systems), Moscow, Strategicheskie prioritety, 2016, 676 p.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход