Hardware and software complex speckle laser diagnostics of aircraft cabin glazing elements


DOI: 10.34759/trd-2023-129-23

Аuthors

Stepanov A. R.1, Pavlov P. V.1*, Vladimirov A. P.2**

1. Air force academy named after professor N.E. Zhukovskii and Y.A. Gagarin, Voronezh, Russia
2. Ural Federal University named after the first President of Russia B.N. Yeltsin, 19, Mira str., Ekaterinburg, 620002, Russia

*e-mail: pavlov.pave@yandex.ru
**e-mail: vap52@bk.ru

Abstract

The article presents the results of the research oriented to developing a method and device for technical condition determining of the aircraft cabins glazing elements. Technical ways of constructing an optoelectronic non-destructive testing system capable of determining the amount of movement of aircraft glazing elements during changes in excess pressure inside the cabin of the aircraft are considered. The authors propose employing the speckle structures method of optical radiation, which operating principle is based on determining the glazing elements displacement by the parameters changing analysis of the speckle fields being recorded, as a non-destructive control tool. The rigging for installing and sensing the glazed parts of the aircraft cabin with the speckle field was developed for practical realization of the said method. The program module for the speckle fields being registered recording and processing with subsequent issuing the amount of the controlled cabin glazing section displacement at the excessive pressure occurrence in the cabin was developed as well. The article presents the results of the full-scale tests of the pilot sample of the developed hardware-software complex while the aircraft cabin tightness determining by analyzing the changes in the number of cases of glazing escaping from the sealing.

The test results confirmed the claimed possibility of determining the size of the glazing escape from the sealing with the developed hardware and software complex. Application the complex during the of aviation equipment operation will significantly reduce economic costs and the number of errors in determining the size of the glazing escape from the sealing s well as increase the probability of determining the of the adhesive joint destruction inside the sealing.

Keywords:

speckles, glazing, exit from sealing, non-destructive testing, defect, cabin

References

  1. Krylov A.A., Komlev A.B., Popov A.B., Voloshina V.Yu. Patent RU 2722400. MPK B64F 5/00, 28.06.2018
  2. Lebedev A.S., Dobrolyubov A.N., Mikhailenko A.V., Bezrukov A.V. Trudy MAI, 2020, no. 112. URL: https://trudymai.ru/eng/published.php?ID=116578. DOI: 10.34759/trd-2020-112-018
  3. Lebedev A.S., Dobrolyubov A.N., Bezrukov A.V., Yarygin D.M. Trudy MAI, 2021, no. 118. URL: https://trudymai.ru/eng/published.php?ID=158257. DOI: 10.34759/trd-2021-118-18
  4. Pavlov P.V., Vol’f I.E., Evsin A.O., Vladimirov A.P., Stepanov A.R., Hakimov L.N. Patent RU 2759038. MPK B64F 5/00, 19.11.2021.
  5. Pavlov P.V., Goryunov A.E. Trudy MAI, 2015, no. 80. URL: https://trudymai.ru/eng/published.php?ID=57019
  6. Vladimirov A.P., Drukarenko N.A., Kamantsev I.S., Pavlov P.V., Evsin A.O. Aviatsionnaya promyshlennost’, 2021, no. 3-4, pp. 97–103.
  7. Goryunov A.E., Pavlov P.V., Petrov N.V. Trudy Voenno-kosmicheskoi akademii imeni A.F. Mozhaiskogo, 2014, no. 64, pp. 132–135.
  8. Vladimirov A.P. Izvestiya vysshikh uchebnykh zavedenii. Radiofizika, 2020, vol. 63, no. 8, pp. 658–671.
  9. Serdobintsev Yu.P., Kukhtik M.P. Sovremennye naukoemkie tekhnologii, 2021, no. 4, pp. 87–93. DOI: 10.17513/snt.38620
  10. Usov S.M., Razumovskii I.A., Odintsev I.N. Zavodskaya laboratoriya. Diagnostika materialov, 2021, vol. 87, no. 9. pp. 50–58. DOI: 10.26896/1028-6861-2021-87-9-50-58
  11. Ivchenko A.V., Safin A.I. Dinamika i vibroakustika, 2022, vol. 8, no. 3, pp. 20–30.
  12. Lobanov L.M., Pivtorak V.A. Svarka i diagnostika, 2014, no. 2, pp. 27–32.
  13. Vladimirov A.P., Kamantsev I.S., Drukarenko N.A., Trishin V.N., Akashev L.A., Druzhinin A.V. Optika i spektroskopiya, 2019, vol. 127, no. 5, pp. 870–880. DOI: 10.21883/OS.2019.11.48530.165-19
  14. Savchenko E.A., Velichko E.N. Optika i spektroskopiya, 2020, vol. 128, no. 7, pp. 991–997. DOI: 10.21883/OS.2020.07.49572.86-20
  15. Ismailov D.A. Nauchnyj zhurnal Fizika. 2015. vol 1. pp. 122–125.
  16. Maksimova L.A., Ryabukho P.V., Mysina N.Yu., Lyakin D.V., Ryabukho V.P. Zhurnal tekhnicheskoi fiziki, 2018, vol. 124, no. 4, pp. 518–527. DOI:10.21883/OS.2018.04.45754.230-17
  17. Petrov N.V., Bespalov V.G., Zhevlakov A.P., Soldatov Yu.I. Opticheskii zhurnal, 2007, vol. 74, no. 11, pp. 70–73.
  18. Vladimirov A.P. Speckle metrology of dynamic macro- and microprocesses in deformable media, Optical Engineering, 2016, vol. 55 (12), pp. 1217–1227. DOI:10.1117/1.OE.55.12.121727
  19. Vladimirov A.P. Dynamic speckle interferometry of high-cycle material fatigue: Theory and some experiments, AIP Conference Proceedings, 2016, vol. 1740, pp. 040004. DOI: 10-1063/14962663
  20. Pavlov P.V., Lagoshnyi I.S., Vol’f I.E., Stepanov A.R., Evsin A.O., Onoshko A.M. Svidetel’stvo RF o registratsii programmy dlya EVM № 2021669662, 01.12.21.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход