Investigation of the flow characteristics of the arcuate wing


DOI: 10.34759/trd-2023-130-06

Аuthors

Egorov I. A.

e-mail: egorov_ff@rambler.ru

Abstract

The article considers the lift coefficient determining specifics of the folding arc-shaped wing determining. The effect of the wing arc curvature on the interference with the body is being estimated. The character of arc-shaped wing lifting force dependence on the roll angle is being determined. Rational scheme of the arc-shaped wing spreading is determined. The discrete vortices method is applied. The computation technique is presented in another article. Reference is available. A rectangular wing is being considered. Two options of the opening angle of 90° and 135° are regarded.

The article demonstrates the possibility of the interference coefficient of the wing with the body determining by integrating the wing local angles of attack, and determining the average angle of attack. This is rather convenient for the wings of non-standard configuration, including the arc-shaped wing. A weak effect of arc curvature on the interference coefficient of the wing with the body is revealed. This is especially typical for the rational scheme arc-shaped wing (with an opening angle of 135°). A significant specificity of the dependence of the lift coefficient of an arc-shaped wing on the angle of roll is revealed compared to the similar dependence for a flat wing. It manifests itself most vividly for the arc-shaped wing with the opening angle of 90°. This wing is of non-monotonic character of the dependence of the lift coefficient on the roll angle with a minimum at the roll angle of 45°. The situation persists for the X-wing layout of the wings. An arc-shaped wing with the opening angle of 135° has characteristics near to characteristics of a flat one. However, even in this case, the independence of the total lifting force from the roll angle for the X-wing layout of the wings is being not ensured.

Conclusions:

  1. An arc-shaped wing with a 90° opening angle is unacceptable due to unsatisfactory dependence of the lift coefficient value on the roll angle.
  2. An arc-shaped wing with the opening angle of 135° has characteristics near to characteristics of a flat wing. However, differences in the value of the lift coefficient and its dependence on the roll angle should be accounted for in the calculations.
  3. The interference coefficient for an arc-shaped wing can be determined by the dependencies for a flat wing. This applies to a wing with an opening angle of 135°.

Keywords:

lift, wing, arcing, discrete vortices, interference, roll angle

References

  1. Voronich I.V., Kolchev S.A., Panchuk D.V., Pesetskii V.A., Silkin A.A., Tkachenko V.V., Nguen T.T. Trudy MAI, 2019, no. 109. URL: https://trudymai.ru/eng/published.php?ID=111334. DOI: 10.34759/trd-2019-109-8
  2. Parkhaev E.S., Semenchikov N.V. Trudy MAI, 2015, no. 80. URL: http://trudymai.ru/eng/published.php?ID=56884
  3. Karimov A.Kh. Trudy MAI, 2011, no. 47. URL: https://trudymai.ru/eng/published.php?ID=26769
  4. Karimov A.Kh. Trudy MAI, 2011, no. 47. URL: https://trudymai.ru/eng/published.php?ID=26552
  5. Grishanina T.V., Shklyarchuk F.N. Aerouprugost’ letatel’nykh apparatov (Aeroelasticity of aircraft), Moscow, MAI, 2020, 100 p.
  6. Grishanina T.V., Shklyarchuk F.N. Izbrannye zadachi aerouprugosti (Selected aeroelasticity problems), Moscow, MAI, 2007, 48 p.
  7. Lyaskin A.S., Shakhov V.G. Izvestiya vuzov. Aviatsionnaya tekhnika, 2000, no. 4, pp. 15-18.
  8. Shklyarchuk F.N., Al’shebel’ Aikham. Izvestiya vuzov. Aviatsionnaya tekhnika, 2003, no. 1, pp. 13-18.
  9. Kazhan V.G. Uchenye zapiski TsAGI, 1982, vol. XIII, no. 1, pp. 64-69.
  10. Glushkov N.N. Uchenye zapiski TsAGI, 1982, vol. XIII, no. 3, pp. 125-130.
  11. Belotserkovskii S.M., Skripach B.K. Aerodinamicheskie proizvodnye letatel’nogo apparata i kryla na dozvukovykh skorostyakh (Aerodynamic derivatives of an aircraft and a wing at subsonic speeds), Moscow, Nauka, 1975, 424 p.
  12. Egorov I.A. Trudy MAI, 2022, no. 123. URL: https://trudymai.ru/eng/published.php?ID=165204. DOI: 10.34759/trd-2022-123-06
  13. Byushgens G.S. Aerodinamika, ustoichivost’ i upravlyaemost’ sverkhzvukovykh samoletov (Aerodynamics, stability and controllability of supersonic aircraft), Moscow, Nauka. Fizmatlit, 1998, 816 p.
  14. Burago N.G. Trudy MAI, 2014, no. 72. URL: https://trudymai.ru/published.php?ID=47257
  15. Golovnev A.V., Kotov I.A., Tarasov A.L. Trudy MAI, 2015, no. 82. URL: https://trudymai.ru/eng/published.php?ID=58453
  16. Kolesnikov G.A. Aerodinamika letatel’nykh apparatov (Aerodynamics of aircraft), Moscow, Mashinostroenie, 1993, 544 p.
  17. Krasnov N.F. Aerodinamika. Ch. II. Metody aerodinamicheskogo rascheta (Aerodynamics. Part 2. Methods of aerodynamic calculation), Moscow, Vysshaya shkola, 1976, 368 p.
  18. Lebedev A.A., Chernobrovkin L.S. Dinamika poleta (Flight dynamics), Moscow, Mashinostroenie, 1973, 616 p.
  19. Baidakov V.B., Ivanov-Emin L.N. Aeromekhanika letatel’nykh apparatov (Aircraft Aeromechanics of aircraft), Moscow, Mashinostroenie, 1965, 410 p.
  20. Bronshtein I.N., Semendyaev KA. Spravochnik po matematike dlya inzhenerov i uchashchikhsya VTUZov (Handbook of Mathematics for engineers and students of higher education institutions), Moscow, Nauka, 1980, 976 p.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход