Investigation of the noise immunity of receiving OFDM-signals in the conditions of unintentional narrowband noise interference


DOI: 10.34759/trd-2023-130-14

Аuthors

Voznuk V. V., Kopalov Y. N.

Mlitary spaсe Aсademy named after A.F. Mozhaisky, Saint Petersburg, Russia

Abstract

The problem of estimating the noise immunity of OFDM-signal reception in the conditions of unintentional narrowband noise interference with different ratios of the width of the signal spectrum is considered. At the same time, narrowband noise interference is understood as Gaussian noise interference with a uniform frequency band-limited spectrum, not exceeding the band signal frequencies. To solve this problem, a simulation model of the communication channel with OFDM has been developed. The simulation results are presented showing the change in the average probability of the channel bit and information bit errors depending on the spectrum width and the central frequency in the interference spectrum at different signal-to-noise ratios. In the course of the study, the dependences of the average probability of a channel and information bit error on the signal-to-noise ratio with a fixed signal-to-noise ratio for OFDM-QPSK type signals under the influence of a noise interference signal aimed at the width of the spectrum with different values of the central frequency in the interference spectrum were obtained. The dependences of the average probability of the channel and information bit error on the signal-to-noise ratio with a fixed signal-to-noise ratio for OFDM-QPSK type signals under conditions of exposure to narrowband noise interference with different values of the spectrum width and a fixed central frequency in the interference spectrum were obtained. When developing the model, the theoretical foundations of OFDM signal generation technology were used, the proposed model implements cascade coding and interleaving similar to the IEEE 802.16 family of standards. It is shown that not only noise interference aimed at the width of the spectrum, but also interference with a spectrum width less than the width of the signal spectrum can have a negative impact on the noise immunity of receiving OFDM signals.

Keywords:

noise immunity, OFDM-signal, narrowband noise interference

References

  1. Lozhkin K.Yu. Informatsiya i kosmos, 2018, no. 2, pp. 37-43.
  2. Khoang V.Z. Paramonov A.A. Sistemy komp’yuternoi matematiki i ikh prilozheniya, 2021, no. 22, pp. 84-89.
  3. Voronin D.A. Sovremennye problemy proektirovaniya, proizvodstva i ekspluatatsii radiotekhnicheskikh system, 2017, no. 5, pp. 167-169.
  4. Karaseva T.S. Perspektivy razvitiya informatsionnykh tekhnologii, 2015, no. 24, pp. 85-89.
  5. Anurag Pandey, Sandeep Sharma. BER Performance of OFDM System in AWGN and Rayleigh Fading Channel, International Journal of Engineering Trends and Technology, 2014, vol. 13, no. 3. pp. 126-128. DOI:10.14445/22315381/IJETT-V13P227
  6. Siddhaling V., Moholkar. BER Performance for FFT and Wavelet Based OFDM Systems over AWGN Channel, International Journal of Research and Scientific Innovation, 2015, vol. 2, no 8, pp. 52-54.
  7. Staritsin S.S., Abakumov A.N., Peredrii A.V., Pavlov A.V. Zhurnal radioelektroniki. 2020, no. 6, pp. 1-16.
  8. Bakhtin A.A., Volkov A.S., Solodkov A.V., Eletskikh E.V. Trudy MAI, 2022, no. 126. URL: https://trudymai.ru/eng/published.php?ID=169000. DOI: 10.34759/trd-2022-126-14.
  9. Vityazev V.V., Nikishev P.B. 24 Mezhdunarodnaya konferentsiya «Tsifrovaya obrabotka signalov i ee primenenie», DSPA-2022. — Moscow, Rossiiskoe nauchno-tekhnicheskoe obshchestvo radiotekhniki, elektroniki i svyazi im. A.S. Popova, 2022, pp. 101-103.
  10. Yatsenko S.Yu. Zhurnal radioelektroniki, 2016, no. 5, pp. 3.
  11. Luzin V.I. Nikitin N.P., Gadzikovskii V.I. Osnovy formirovaniya, peredachi i priema tsifrovoi informatsii (Fundamentals of Formation, Transmission and Reception of Digital Information), Moscow, SOLON-Press, 2014, 316 p.
  12. Simon M.K., Alouini M.S. Digital Communication over Fading Channels — A Unified Approach to Performance Analysis, 1st Ed., Wiley, 2000. DOI:10.1002/0471200697
  13. Zvonarev V.V., Popov A.S., Khudik M.Yu. Trudy MAI, 2019, no. 105. URL: https://trudymai.ru/eng/published.php?ID=104213.
  14. Nosov V.I. Metody povysheniya pomekhoustoichivosti sistem radiosvyazi s ispol’zovaniem tekhnologii MIMO i prostranstvenno-vremennoi obrabotki signala (Methods of Increasing the Noise Immunity of Radio Communication systems using MIMO-technology and Spatio-Temporal Signal Processing), Novosibirsk, Sibirskii gosudarstvennyi universitet telekommunikatsii i informatiki, 2014, 316 p.
  15. Kazak P.G., Shevtsov V.A. Trudy MAI, 2021, no. 118. URL: https://trudymai.ru/eng/published.php?ID=158239. DOI: 10.34759/trd-2021-118-06
  16. Bakulin M.G., Ben Rezheb T.B.K., Kreindelin V.B., Mironov Yu.B. T-Comm: Telekommunikatsii i transport, 2022, vol. 16, no. 3, pp. 11-17.
  17. Wang L., Jezek B. OFDM modulation schemes for military satellite communications, Military Communications Conference, MILCOM 2008, IEEE, December 2008. DOI: 10.1109/MILCOM.2008.4753506
  18. Vishnevskii V.M., Portnoi S.L., Shakhnovich I.V. Entsiklopediya WiMAX. Put’ k 4G (The WiMAX Encyclopedia. The Path to 4G), Moscow, Tekhnosfera, 2009, 472 p.
  19. Voznyuk V.V., Kopalov Yu.N., Fomin A.V. Trudy Voenno-kosmicheskoi akademii imeni A.F. Mozhaiskogo, 2022, no. 682, pp. 38-47.
  20. Parshutkin A.V., Buchinskii D.I. Informatika i avtomatizatsiya, 2020, vol. 19, no. 5, pp. 967-990. DOI: 10.15622/ia.2020.19.5.3

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход