Calculation of the effective scattering surface of small-sized aerial objects


DOI: 10.34759/trd-2023-130-17

Аuthors

Novikov A. N.*, Khorchev V. A.**

Military Academy of Strategic Rocket Troops named after Peter the Great, SRTMA, 8, Karbysheva str., Balashikha, Moscow region, 143900, Russia

*e-mail: band31@mail.ru
**e-mail: alfabravo59@mail.ru

Abstract

When synthesizing algorithms for detecting and recognizing small-sized aerial objects (SSAO), it becomes necessary to calculate their effective scattering surface (ESS). Small-sized aerial objects, such as light unmanned aerial vehicles (UAVs), UAVs with an electric motor, created according to the format of a flying wing, artisanal UAVs, etc. in recent years have become a threat that poses a danger to civilian and military facilities [1].

Considering that ESS is included in the radar range equation [2], its analytical calculation for the SSAO will allow determining the minimum range at which air objects can be detected by radio monitoring posts. As a result, the early detection of such aircraft will ensure the timely issuance of target designations to firing means for subsequent decision-making on the destruction of the SSAO.

The article deals with the calculation of the RCS of simple objects and objects of complex shape. It has been established that the RCS of objects of complex shape, which include small-sized air objects, can be calculated analytically. The result of the article is a method for calculating the RCS of the SSAO, which involves the use of the RCS values of individual triangles obtained in the process of approximating the object under study in the modeling environment to calculate the resulting RCS.

The article also presents the results of mathematical modeling obtained using the program «Altair Feko», backscattering diagrams of the UAV at different angles of incidence of an electromagnetic wave. As a result, it was found that the backscattering diagram will take maximum values at normal incidence of an electromagnetic wave, and decreases with a change in the angle of exposure of the object under study, respectively.

Keywords:

effective scattering surface, small-sized air object, analytical calculation, elementary triangles

References

  1. Ananenkov A.E., Marin D.V., Nuzhdin V.M., Rastorguev V.V., Sokolov P.V. Trudy MAI, 2016, no. 91. URL: http://trudymai.ru/eng/published.php?ID=75540
  2. Almazov V.B. Metody passivnoi radiolokatsii (Passive radar methods), Khar’kov, Izd-vo VIRTA im. Govorova L.A., 1974, 86 p.
  3. Bachevskii S.V. Osnovy radiolokatsii i radionavigatsii (Fundamentals of radar and radio navigation), Moscow, Voenizdat, 2010, 708 p.
  4. Mosienko S.A. Molodoi uchenyi, 2020, no. 32 (322), pp. 35–38.
  5. Vasin V.V., Stepanov B.M. Spravochnik-zadachnik po radiolokatsii (Reference book on radar), Moscow, Sovetskoe radio, 1977, 320 p.
  6. Verba V.S. Aviatsionnye kompleksy radiolokatsionnogo dozora i navedeniya. Printsipy postroeniya, problemy razrabotki i osobennosti funktsionirovaniya (Aviation complexes of radar patrol and guidance. Principles of construction, development problems and features of functioning), Moscow, Radiotekhnika, 2014, 528 p.
  7. Bakulev P.A. Radiolokatsionnye sistemy (Radar systems), Moscow, Radiotekhnika, 2004, 320 p.
  8. Eremin G.V., Gavrilov A.D., Nazarchuk I.I. Armeiskii vestnik, 2015, no. 6 (14), URL: http://otvaga2004.ru/armiya-i-vpk/armiya-i-vpkvzglyad/malorazmernye-bespilotniki/
  9. Kartavov S.A. Matematicheskie terminy (Mathematical terms), Kiev, Vysshaya shkola, 1988, 298 p.
  10. Gigolo A.I., Kuznetsov G.Yu. Trudy MAI, 2013, no. 68. URL: http://trudymai.ru/eng/published.php?ID=41691
  11. Sukharevskii O.I., Vasilets V.A., Kukobko S.V. Rasseyanie elektromagnitnykh voln vozdushnymi i nazemnymi radiolokatsionnymi ob"ektami (Scattering of electromagnetic waves by air and ground radar objects), Khar’kov, Izd-vo KhUPS, 2009, 469 p.
  12. Prokhorov Yu.V. et al. Matematicheskii entsiklopedicheskii slovar’ (Mathematical encyclopedic dictionary), Moscow, Sovetskaya entsiklopediya, 1988, 847.
  13. Blyakhman A.B., Myakinkov A.V., Kostylev V.I. et al. Bistatic radar: principles and practice ed. by M. Cherniakov. Chichester, England: John Wiley & Sons, Ltd, 2007. 504 p. DOI:10.1002/9780470035085
  14. Blyakhman A.B. Forward scattering bistatic radar, PIERS Workshop on advances in radar methods, Baveno, Italy, 1998, pp. 107-113.
  15. Blyakhman A.B., Runova I.A. Forward scattering radiolocation bistatic RCS and target detection, Proceedings of the 1999 IEEE radar conference, Waltham, USA, 1999, pp. 203-208.
  16. Grishin Yu.P., Ipatov V.P., Kazarinov Yu.M. Radiotekhnicheskie sistemy (Radar systems), Moscow, Vysshaya shkola, 1990, 496 p.
  17. Nenashev V.A. Trudy MAI, 2021, no. 118. URL: http://trudymai.ru/eng/published.php?ID=158089. DOI: 10.34759/trd-2021-118-11
  18. Ashurkov I.S., Leshko N.A. Trudy MAI, 2015, no. 83. URL: http://trudymai.ru/eng/published.php?ID=62297
  19. Ashurkov I.S., Kakaev V.V., Leshko N.A. Informatsionno-upravlyayushchie sistemy, 2015, no. 6 (79), pp. 81-85.
  20. Griffiths H.D., Baker C.J. An Introduction to Passive Radar, New York, Artech House, 2017, 110 p.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход