Landing trajectory optimization and simulation for mini-UAV considering constraint of control and landing speed


DOI: 10.34759/trd-2023-130-21

Аuthors

Nguyen N. D.1*, Doan T. T.1**, Nguyen T. T.1***, Tran Q. M.1****, Nguyen Q. A.1*****, Ngo V. T.2******

1. Le Quy Don Technical University, 236, Hoang Quoc Viet, Ha Noi, Viet Nam
2. Air defence-air force Academy, Son Tay, Ha Noi, VietNam

*e-mail: bauman252@lqdtu.edu.vn
**e-mail: tuandoanthe@yahoo.com.vn
***e-mail: tungnt@lqdtu.edu.vn
****e-mail: minhtq@lqdtu.edu.vn
*****e-mail: quanganh.vt85@gmail.com
******e-mail: toantbhk@gmail.com

Abstract

This article presents the method of optimizing the landing trajectory of mini-UAV considering constraint of control and landing speed and the method of tracking the found trajectory. The chosen controls are namely normal and tangential overload. The selected objective function is in the Bolza form, including landing accuracy and energy consumption during flight. Applying the Pontryagin’s maximum principle turns the optimal control problem into the boundary problem, which is solved by the parameter continuation method. To verify the optimal trajectory being gained, the authors selects a specific type of UAV to simulate tracking on the aforementioned trajectory through the Matlab Simulink software. The results show the application of the optimal trajectory tracking controller assures the accuracy and safety of UAV landing.

Keywords:

trajectory optimization, parameter continuation method, normal overload, tangential overload, trajectory tracking controller, Constraint of control

References

  1. Horla D., Cieślak J. On obtaining energy-optimal trajectories for landing of UAVs, Energies, 2020, vol. 18 (8), pp. 2062. DOI:10.3390/en13082062
  2. Rucco A., Aguiar A.P., Hauser J. Trajectory optimization for constrained UAVs: A virtual target vehicle approach, In 2015 International Conference on Unmanned Aircraft Systems (ICUAS), 2015, Denver, CO, USA, pp. 236-245. DOI:10.1109/ICUAS.2015.7152296
  3. Enright W.H. Continuous numerical methods for ODEs with defect control, Journal of Computational and Applied Mathematics, 2000, vol. 125 (1-2), pp. 159-170. DOI: 10.1016/S0377-0427(00)00466-0
  4. Petukhov V.G. Method of continuation for optimization of interplanetary low-thrust trajectories, Cosmic Research, 2012, vol. 50 (3), pp. 249-261. DOI: 10.1134/S0010952512030069
  5. Fountoulakis E., Paschos G.S., Pappas N. UAV Trajectory Optimization for Time Constrained Applications, IEEE Networking Letters, 2020, vol. 2 (3), pp. 136-139. DOI: 10.1109/LNET.2020.3007310
  6. Gong J., Xie R. Trajectory optimization of unmanned aerial vehicle in vertical profile, In International Conference on Intelligent Robotics and Applications. Springer, Berlin, Heidelberg, 2012, pp. 404-410.
  7. Sun S., Fan G., Fan Y. Trajectory Optimization of Unmanned Aerial Vehicle’s Ascending Phase based on hp Adaptive Pseudospectral Method, In 3rd International Conference on Computer Engineering, Information Science & Application Technology (ICCIA 2019), Atlantis Press, 2019, pp. 523-533. DOI: 10.2991/iccia-19.2019.82
  8. Visintini A., Perera T.D.P., Jayakody D.N.K. 3-D Trajectory Optimization for Fixed-Wing UAV-Enabled Wireless Network, IEEE Access, 2021, vol. 9, pp. 35045-35056. DOI: 10.1109/ACCESS.2021.3061163
  9. Cuong N.D. Modeling and simulating the motion of autonomous flying devices, People’s Army Publisher, Hanoi, 2002.
  10. Dien N. N., Van Toan N. Optimization of UAV landing taking into consideration of limitation on control based on solution of the boundary value problem by the parameter continuation, In Journal of Physics: Conference Series, IOP Publishing, 2019, vol. 1172, no. 1. DOI: 10.1088/1742-6596/1172/1/012075
  11. Fluent Inc. Ansys Fluent 15 Users Guide, 2013. URL: https://vdocument.in/ansys-fluent-tutorial-guide-r-15.html?page=1
  12. Aleksandrov A.A. Optimal’noe upravlenie letatel’nym apparatom s uchetom ogranichenii na upravlenie (Optimal control of aircraft, taking into account restrictions on control), dissertation abstract, Saint Petersburg, 2009, 134 p.
  13. Kabanov S.A., Aleksandrov A.A. Applied optimal control problems, Saint Petersburg, Baltic State Technical University, 2007.
  14. Dikusar V.V., Koska M., Figura A. A Parameter Extension Method for Solving Boundary Value Problems in Optimal Control Theory, Differential Equations, 2001, vol. 37 (4), pp. 479-484. DOI:10.1023/A:1019271321833
  15. Petukhov V.G. Kosmicheskie issledovaniya, 2019, vol. 57, no 5, pp. 373-385. DOI: 10.1134/S0023420619050066
  16. Leb Kh.V., Mogulkin A.I., Obukhov V.A., Petukhov V.G. Trudy MAI, 2013, no. 70. URL: http://trudymai.ru/eng/published.php?ID=44497
  17. Konstantinov M.S., Petukhov V.G., Leb Kh.V. Trudy MAI, 2012, no. 60. URL: https://trudymai.ru/eng/published.php?ID=35420
  18. Leb Kh.V., Petukhov V.G., Popov G.A. Trudy MAI, 2011, no. 42. URL: http://trudymai.ru/eng/published.php?ID=24275
  19. Kuznetsov E.B. Optimal parametrization in numerical construction of curve, Journal of the Franklin Institute, 2007, vol. 344, pp. 658-671. DOI: 10.1016/j.jfranklin.2006.02.036
  20. Hairer E., Wanner G. Solving Ordinary Differential Equations I: Nonstiff Problems. Springer-Verlag, Berlin, 1993. DOI: 10.1007/978-3-540-78862-1

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход