Wear-resistant and antifriction materials and coatings used in friction units of spacecraft structural elements manufactured by Lavochkin association


Аuthors

Bogachev V. A.1*, Markachev N. A.1, Petrov Y. A.1, Roshchin M. N.2, Sergeev D. V.1**, Shtokal A. O.1

1. Lavochkin Research and Production Association, NPO Lavochkin, 24, Leningradskay str., Khimki, Moscow region, 141400, Russia
2. Mechanical Engineering Research Institute of the Russian Academy of Sciences, 4, M. Khariton'evskii per., Moscow, 101990, Russia

*e-mail: nio27@laspace.ru
**e-mail: sergeevdv@laspace.ru

Abstract

Specialized wear-resistant antifriction materials and coatings are applied in space technology in friction nodes, which can work in open space and (or) atmospheric conditions of the planets under study. All antifriction and wear-resistant materials and coatings can be conditionally divided into liquid lubricants (oils), greases (pastes), antifriction solid lubricants and self-lubricating (antifriction) materials. Greases are soft ointments of dense thick consistency and are intended to reduce the friction force in mechanical assemblies, decrease the rubbing pairs wear, prevent tearing and jamming, and ensure the necessary service life of the friction unit. In the products developed by S.A. Lavochkin NPO, four brands of antifriction lubricants are most often used: TSIATIM-221, VNII NP-220, VNII NP-274, VNII NP-284. They have been widely tested on the Luna, Venus, Mars, Forecast and Cosmos spacecraft series. When the pressure is reduced to 0.1–10 Pa, the lubricants performance is significantly reduced. The solid lubricating coatings application allows successfully solving the problem of friction and wear reduction of open friction units. These coatings represent a mixture of powdered lubricants dispersed in binder (film-forming) polymer materials and diluted with solvents to the required viscosity for spraying them on the friction surface with subsequent heat treatment. The following solid lubricating coatings are employed in the products of NPO Lavochkina JSC: VNII NP-212, VNII NP-213, VNII NP-230, VNII NP-512, EONITE-3, in which the filler is molybdenum disulfide, or a mixture of molybdenum disulfide with graphite. As an alternative to the NP-512 Research Institute, MODENGY-1001 and MODENGY-1002 TSPS have been introduced. A significant limitation on the application of molybdenum disulfide coatings consists in the fact that at temperatures above +400°C, MoS2 begins oxidizing intensively. When molybdenum disulfide is oxidized, molybdenum trioxide is formed, which lubricating properties change to the abrasive ones, which does not allow them to be employed in the atmospheres of the planets of the Solar System, primarily Venus. In this regard, the task arises of selecting materials (friction pairs) of friction units of spacecraft that descend in the atmosphere, land and work on the surface of Venus, which can function at temperatures above +450°C, which can be achieved only through the use of self-lubricating antifriction materials. New promising self-lubricating antifriction materials are proposed: carbon-carbon containing composite materials, partially stabilized zirconium, zirconium 702 coated with micro-arc oxidation. As response materials (counter body), it is proposed to consider the most common structural metal materials of spacecraft: 40X13, 30XGSA steels, aluminum alloy AMg6, titanium alloy VT6. Their laboratory testing and tribological tests are required to confirm the feasibility and feasibility of their use for friction units operating in open space and (or) the atmosphere of Venus.

Keywords:

friction; wear; hard-lubricating coatings; lubricants; antifriction materials

References

  1. Kragel’skii I.V. Trenie i iznos (Friction and wear), Moscow, Mashgiz, 1992, 383 p.

  2. Kosmicheskie smazki. URL: http://www.bibliotekar.ru/6-smazka/36.htm

  3. Grishin S.A., Zakharov Yu.V., Zashchirinskii S.A., Loshakov V.A. et al. Vestnik NPO imeni S.A. Lavochkina, 2020, no. 1, pp. 62-67.
  4. Malenkov M.I., Karatushin S.I., Tarasov V.M. Konstruktsionnye i smazochnye materialy kosmicheskikh mekhanizmov (Structural and lubricants of space mechanisms): textbook. Saint Petersburg, Baltiiskii gosudarstvennyi tekhnicheskii universitet, 2007, 54 p.

  5. Yarosh V.M., Moisheev A.A., Bronovets M.A. Trenie i iznos, 2003, vol. 24, no. 6, pp. 626–635.

  6. Smazki plastichnye. Spravochnik. URL: http://www.aksioma55.ru/oils/russia/russia14-1.html

  7. Smirnov M.M., Malyugin A.S. Trudy MAI, 2012, no. 51. URL: https://trudymai.ru/eng/published.php?ID=29174

  8. Ravikovich Yu.A., Ermilov Yu.I., Kholobtsev D.P., Ardatov K.V., Napalkov A.A., Shakh D.I. Trudy MAI, 2011, no. 46. URL: https://trudymai.ru/eng/published.php?ID=26119
  9. GOST 7142-74. Smazki plastichnye. Metody opredeleniya kolloidnoi stoikosti (GOST 7142-74. State standard. Lubricants are plastic. Methods for determining colloidal resistance), 1975, 69 p.

  10. GOST 9433-80. Smazka TsIATIM-221. Tekhnicheskie usloviya. (GOST 9433-80. State standard. CYATIM-221 lubricant. Technical conditions), 1982, 3 p.

  11. TU38-101475-74. Tekhnicheskie usloviya. Smazka VNII NP-220. (TU38-101475-74. Technical specifications. Lubrication of VNII NP-220), 1975, 17 p.

  12. GOST 19337-73. Smazka VNII NP-274. Tekhnicheskie usloviya (GOST 19337-73. State standard. Lubrication of VNII NP-274, Technical conditions), 1975, 4 p.

  13. Bushe N.A. Trenie, iznos i ustalost’ v mashinakh (Friction, wear and fatigue in machines), Moscow, Transport, 1987, 223 p.

  14. Khebda M., Chichinadze A.V. Spravochnik po tribotekhnike (Handbook of Tribotechnics), Moscow- Warzsaw, vol. 1.-3, 1546 p.

  15. Fuks I.G., Buyanovskii I.A. Vvedenie v tribologiyu (Introduction to tribology), Moscow, Neft’ i gaz, 1995, 278 p.

  16. Khopin P.N. Kompleksnaya otsenka rabotosposobnosti par treniya s tverdosmazochnymi pokrytiyami v razlichnykh usloviyakh funktsionirovaniya (Comprehensive assessment of the performance of friction pairs with hard–lubricating coatings in various operating conditions), Moscow, MATI, 2012, 256 p.

  17. MODENGY-1001: Osnovnye svoistva i oblasti primeneniya pokrytiya. URL: https://borfi.ru/press/416.html

  18. Kurkov A.A. Mezhdunarodnyi zhurnal prikladnykh i fundamental’nykh issledovanii, 2016, no. 2-2, pp. 260-264.

  19. Kondrat’ev K.Ya., Krupenin N.N., Selivanov A.S. Planeta Venera (Planet Venus), Leningrad, Gidrometeoizdat, 1987, 276 p.

  20. Alekseev V.A., Minchin S.P. Venera raskryvaet tainy (Venus reveals secrets), Moscow, Mashinostroenie, 1975, 96 p.

  21. Lesnevskii L.N., Lyakhovetskii M.A., Tyurin V.N. Trudy MAI, 2011, no. 43. URL: https://trudymai.ru/eng/published.php?ID=24765

  22. Fedorov B.A., Obukhov V.A., Mogulkin A.I. Trudy MAI, 2014, no. 77. URL: https://trudymai.ru/eng/published.php?ID=52975

  23. Alisin V.V., Roshchin M.N., Luk’yanov A.I., Vorontsov V.A. et al. Vestnik NPO imeni S.A. Lavochkina, 2019, no. 1, pp. 61-65.

  24. Alisin V.V., Roshchin M.N., Markachev N.A., Bogachev V.A. Modeling of friction engagement in a joint with carboncarbon composite bushings in the atmosphere of Venus, Journal of Physics: Conference Series, 2020, vol. 1679 (4), pp. 042059. DOI:10.1088/1742-6596/1679/4/042059

  25. Roshchin M.N, Markachev N.A., Bogachev V.A. Tribology of carbon-containing materials in the carbon dioxide environment at high temperatures, IOP Conference Series Materials Science and Engineering, 2020, vol. 862, pp. 062063. DOI: 10.1088/1757-899X/862/6/062063

  26. Roshchin M.N., Markachev N.A., Bogachev V.A., Vorontsov V.A. Dependence of the friction coefficient in a carbon dioxide medium at high temperatures, AIP Conference Proceedings, 2021, vol. 2402, pp. 020008. DOI: 10.1063/5.0071645


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход