Investigation of jet-centrifugal nozzle of sprinkler system by computational experiment with consideration of mathematical model of medium dispersibility


Аuthors

Basharina T. A.*, Shmatov D. P.**, Glebov S. E.***, Akolzin I. V.****

LLC SPE "InterPolaris", Novovoronezh, Russia

*e-mail: ta@interpolyaris.ru
**e-mail: shmatov@inlerpolyaris.ru
***e-mail: glebovse@interpolyaris.ru, se_glebov@mail.ru
****e-mail: akolziniv@interpolyaris.ru

Abstract

Sprinkler systems of nuclear power plants (NPP) are one of the key mechanisms for eliminating the consequences of design basis accidents, which stipulates high requirements for the development of nozzles as parts of sprinkler systems. The article presents the results of computational experiment of sprinkler nozzle functioning in the continuous medium formulation, employing Continuous medium morphology and Dispersed medium morphology. Average sizes of dispersed particles were determined for the computational experiment in the formulation with regard to the medium dispersity. The basic parameter of the sprinkler nozzle, namely the angle of the torch atomization, was determined on the experiment in the wide range of the flow characteristic. The computational experiment results validation and research tests of the sprinkler nozzle was performed, which results revealed the high degree of uncertainty in the continuous medium formulation, with relative error reaching up to 25%, and high degree of certainty with the dispersive medium formulation with relative error less that 3% in each experimental point. The above said is indicative of the possibility of cost reduction on the sprinkler system and test rig development by natural tests replacing with the computational experiment.

Keywords:

sprinkler nozzle, numerical simulation, spray angle, hydraulic tests, localizing safety system

References

  1. Vargaftik N.B. Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei (Handbook on thermophysical properties of gases and liquids), Moscow, Fizmatgiz, 1963, 708 p.

  2. Egorychev V.S. Raschet i proektirovanie smeseobrazovaniya v kamere ZhRD (Calculation and design of mixture formation in the LRE chamber), Samara, SGAU, 2011, 99 p.

  3. Idel’chik I.E. Spravochnik po gidravlicheskim soprotivleniyam (Handbook of hydraulic resistance), Moscow, Mashinostroenie, 1992, 662 p.

  4. Al’tshul’ A.D. Gidravlicheskie soprotivleniya (Hydraulic resistance), Moscow, Nedra, 1982, 224 p.

  5. Ashwani K. Gupta, D.G. Lilley, Nick Syred. Swirl Flows. Energy and engineering science series, Abacus Press, 1984, 475 p. DOI: 10.1016/0010-2180(86)90133-1

  6. Wei Zhou, Kai He, Jiannan Cai, Shaojie Hu, Jiuhua Li, Ruxu Du. Simulation and Experimental Study on Cavitating Water Jet Nozzle, IOP Conference Series Earth and Environmental Science, 2017, vol. 51. DOI: 10.1088/1755-1315/51/1/012006

  7. Zalkind V.I., Zeigarnik Yu. A., Nizovskiy V.L., Nizovskiy L.V., Schigel S.S. Superheated Water Atomization: Some New Aspects of Control and Determining Disperse Characteristics of Atomization Plume in Micron and Submicron Ranges of Droplet Size, Journal of Physics Conference Series, 2017, vol. 891. DOI: 10.1088/1742-6596/891/1/012011

  8. Semkin E.V. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie, 2018, no. 4, pp. 141-154. DOI: 10.18287/2541-7533-2018-17-4-141-154

  9. Abbasalizadeha M., Jafarmadara S., Shirvanib H. The Effects of Pressure Difference in Nozzle’s two Phase Flow on the Quality of Exhaust Mixture, International Journal of Engineering, 2013, vol. 26, no. 5. DOI: 10.5829/idosi.ije.2013.26.05b.12

  10. Nikitchenko Yu.A. Izvestiya Rossiiskoi akademii nauk. Mekhanika zhidkosti i gaza, 2018, no. 2, pp. 128-138. DOI: 10.7868/S0568528118020135

  11. Sadiki A., Repp S., Schneider C., Dreizler A., Janicka J. Numerical and experimental investigations of confined swirling combusting flows, Progress in Computational Fluid Dynamics, 2003, vol. 3, no. 2-4, pp. 78-88. DOI: 10.1504/PCFD.2003.003778

  12. Abramovich G.N. Teoriya turbulentnykh strui (Theory of turbulent jets), Moscow, Gosudarstvennoe izd-vo fiziko-matematicheskoi literatury, 1960, 715 p.

  13. Dulov V.G., Luk’yanov G.A. Gazodinamika protsessov istecheniya. (Gas dynamics of outflow processes), Novosibirsk, Nauka, 1984, 235 p.

  14. Loitsyanskii L.G. Mekhanika zhidkosti i gaza (Mechanics of liquid and gas), Moscow, Drofa, 2003, 846 p.

  15. Anikeev A.A., Molchanov A.M., Yanyshev D.S. Osnovy vychislitel’nogo teploobmena i gidrodinamika (Fundamentals of computational heat transfer and hydrodynamics), Moscow, MAI, 2010, 149 p.

  16. Molesson G.V. Trudy TsAGI, 1988, no. 2411, pp. 30-41.

  17. Temnov A.N., Shkapov P.M., Chzhaokai Yu. Trudy MAI, 2023, no. 129. URL: https://trudymai.ru/eng/published.php?ID=173024. DOI: 10.34759/trd-2023-129-12

  18. Snazin A.A., Shevchenko A.V., Panfilov E.B. Trudy MAI, 2022, no. 125. URL: https://trudymai.ru/eng/published.php?ID=168165. DOI: 10.34759/trd-2022-125-06

  19. Baklanov A.V., Krasnov S.D., Garaev A.I. Trudy MAI, 2020, no. 113. URL: https://trudymai.ru/eng/published.php?ID=117960. DOI: 10.34759/trd-2020-113-03

  20. Baklanov A.V., Makarov G.F., Vasil’ev A.A., Nuzhdin A.A. Trudy MAI, 2019, no. 104. URL: https://trudymai.ru/eng/published.php?ID=102105


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход