Determination of the inclination angle of unprepared landing pad of unmanned aerial vehicle helicopter with a digital elevation map information


Аuthors

Ermakov P. G.1*, Evdokimenkov V. N.2**, Gogolev A. A.1***

1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. ,

*e-mail: pavel-ermakov-1998@mail.ru
**e-mail: evdokimenkovvn@mai.ru; vnevdokimenkov@gmail.com
***e-mail: kirbizz8@yandex.ru

Abstract

In the process of the target mission an emergency may occur on the helicopter type unmanned aerial vehicle (UAV) board. So, the problem of an emergency landing of the helicopter type UAV on an unprepared landing pad arises. One of the requirements for an unprepared landing pad is the requirement for a limit value of the inclination angle of a landing pad. The inclination angle of an unprepared landing pad should be no more than 10 based on this requirement. This article describes the problem of a determination of the inclination angle of an unprepared landing pad of the helicopter type UAV with a priori digital elevation map information (DEM). A DEM has such information as: geographic latitude and longitude coordinates of the Earth’s surface point, a height of the point of interest and a type of the Earth’s surface point. Also, a DEM contains random errors, so a determination of the inclination angle is a statistical problem. The description of the developed technique and the proposed optimal algorithm of a determination of the inclination angle with a priori digital elevation map is given. To test the performance of the developed technique of a determination of the inclination angle with a DEM the special software is constructed. The results of a simulation modelling of the proposed optimal algorithm of determination of the inclination angle of an unprepared landing pad such as: the statistical characteristics of the inclination angle’s estimation of an unprepared landing pad and the estimation of a time complexity of the proposed optimal algorithm of determination of the inclination angle are presented. The verification of the developed optimal algorithm of determination of the inclination angle of an unprepared landing pad with the SRTM open-source digital elevation map and the OpenStreetMap web mapping service is completed.

Keywords:

unprepared landing pad, digital elevation map, least squares method, Monte-Carlo method

References

  1. Prilozhenie 14 k Konventsii o mezhdunarodnoi grazhdanskoi aviatsii. Aerodromy. T. II Vertodromy. Mezhdunarodnaya organizatsiya grazhdanskoi aviatsii (Annex 14 to the Convention on International Civil Aviation. Volume II Heliports. International Civil Aviation Organization.), 2013. URL: https://www.airfield-lights.com/docs/files/annex14v2_2013.pdf

  2. Al'khanov D.S., Kuzurman V.A., Gogolev A.A. Aerospace MAI Journal, 2020, vol. 29, no. 3, pp. 209-221. DOI: 10.34759/vst-2022-3-209-221

  3. Ermakov P.G. XLIX Mezhdunarodnaya molodezhnaya nauchnaya konferentsiya “Gagarinskie chteniya”: sbornik trudov, Moscow, 11-14 aprelya 2023 g.

  4. OpenStreetMap. URL: https://www.openstreetmap.org

  5. Khalid L.A. El-Ashamawy. Testing the positional accuracy of OpenStreetmap data for mapping applications, Geodesy and Cartography, 2016, vol. 42, no. 1, pp. 25–30. DOI: 10.3846/20296991.2015.1160493

  6. Shuttle Radar Topography Mission. URL: https://www2.jpl.nasa.gov/srtm/

  7. On'kov I.V. Geomatika, 2011, no. 3. C. 40-46.

  8. Dumit Zh.A. Geograficheskie issledovaniya Krasnodarskogo kraya: sbornik trudov. Krasnodar, Kubanskii gosudarstvennyi universitet, 2007, pp. 49-53.

  9. M. El Hage, L. Villard, Y. Huang, et al. Multicriteria Accuracy Assessment of Digital Elevation Models (DEM) Produced by Airborne P-Band Polarimetric SAR Tomography in Tropical Rainforests, Remote Sensing, 2022, vol. 14, no. 17. DOI: 10.3390/rs14174173

  10. A.J.A.M. Temme, G.B.M. Heuvelink, J.M. Schoorl, L. Claessens. Chapter 5 Geostatistical Simulation and Error Propagation in Geomorphometry, Developments in Soil Science, 2009, vol. 33, pp. 121-140. DOI: 10.1016/S0166-2481(08)000005-6

  11. T. Hengl, I.S. Evans. Chapter 2 Mathematical and Digital Models of the Land Surface, Developments in Soil Science, 2009, vol. 33, pp. 31–63. DOI: 10.1016/S0166-2481(08)000002-6

  12. M. Borisov, R. Banković, S. Drobnjak. Modelling the Uncertaintly of Digital Elevation Models with Geostatistical and Application on Spatitally Distribution of Soil Nitrogen, Scientific Technical Review, 2009, vol. LIX, no. 3-4. URL: http://vti.mod.gov.rs/ntp/rad2009/34-09/8/8.pdf

  13. Mazmishvili A.I. Teoriya oshibok i metod naimen'shikh kvadratov (The theory of errors and the method of least squares), Moscow, Nedra, 1978, 311 p.

  14. Zyong D.Kh., Fam V.A. Trudy MAI, 2010, no. 41. URL: https://trudymai.ru/eng/published.php?ID=23795

  15. Moung Khtang Om, Chzho Zin Latt, Prikhod'ko C.Yu. Trudy MAI, 2018, no. 99. URL: https://trudymai.ru/eng/published.php?ID=91920

  16. Goncharenko V.I., Kan Yu.S., Travin A.A. Trudy MAI, 2012, no. 61. URL: https://trudymai.ru/eng/published.php?ID=35615

  17. Ermakov S.M., Mikhailov G.A. Kurs statisticheskogo modelirovaniya (The statistical modelling course), Mosocw, Nauka, 1976, 320 p.

  18. Sobol' I.M. Chislennye metody Monte-Karlo, (The numerical Monte-Carlo methods), Moscow, Vysshaya shkola, 1985, 271 p.

  19. Zeya M., Khlopkov A.Yu., Chzho Z. Trudy MAI, 2011, no. 42. URL: https://trudymai.ru/eng/published.php?ID=24272

  20. Osipov S.V. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Geografiya. Geoekologiya, 2016, no. 3, pp. 45-50.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход