On the stability of stationary rotation of a solid body with a cavity containing a cryogenic liquid


Аuthors

Temnov A. N.*, Yan N. O.**

Bauman Moscow State Technical University, MSTU, 5, bldg. 1, 2-nd Baumanskaya str., Moscow, 105005, Russia

*e-mail: antt45@mail.ru
**e-mail: yno64528@gmail.com

Abstract

The article considers the stationary rotation stability of a solid body with a cylindrical cavity completely filled with incompressible cryogenic liquid. The stationary rotation stability of a body with stratified liquid is being studied based on ordinary differential equations, which coefficients are being determined from the solution of time-independent boundary value problems of hydrodynamics. A distinctive feature of all cryogenic liquids is the non-uniform change of density and temperature observed in all storage and operation modes. The most significant stratification of the cryogenic component occurs in the direction of action of the external field of mass forces. To study motions of this mechanical system, a stratified incompressible fluid is a suitable model. The authors studied various cases: (a) the case of solid body rotation in the absence of liquid mass and with solidified liquid; (b) the case of solid body rotation with homogeneous liquid, when the moment of inertia of the solid body equals to zero or not equal to zero; (c) the case of solid body rotation with stratified liquid, when the moment of inertia of the solid body equals zero or not equal to zero. Characteristic equations of the boundary value problem and the motion of a solid body with a stratified fluid stationary rotating about its axis were obtained. The stability regions of free rotation of a solid with stratified fluid in dimensionless parameters are plotted. The obtained results allow drawing inference that stable stratification of the fluid leads to a decrease in the areas of instability in the rotation of a solid body with a cylindrical cavity completely filled with fluid. The considered method maybe used for studying not only the cylindrical cavity, but the other forms of cavity as well.

Keywords:

rotational stability, cryogenic fluid, stratified fluid, free oscillations

References

  1. Zhukovskii N.E. O dvizhenii tverdogo tela, imeyushchego polosti, napolnennye odnorodnoi kapel’noi zhidkost’yu: reprint (On the motion of a solid body having cavities filled with a homogeneous droplet liquid), Moscow, Izd-vo MGTU im. N. E. Baumana, 2017, 137 p.

  2. Hough S.S. The oscillations of a rotating ellipsoidal shell containing fluid, Philosophical Transactions of the Royal Society of London, A, 1895, vol. 186, part 1, pp. 469–506. DOI: 10.1098/rspl.1894.0153

  3. Sobolev S.L. Prikladnaya mekhanika i tekhnicheskaya fizika, 1960, no. 3, pp. 20-55.

  4. Ishlinskii A.Yu., Temchenko M.E. Prikladnaya mekhanika i tekhnicheskaya fizika, 1960, no. 3, pp. 65-75.

  5. Okhotsimskii D.E. Prikladnaya matematika i mekhanika, 1956, vol. 20, no. 1, pp. 3-20.

  6. Chernous’ko F.L. Zhurnal vychislitel’noi matematiki i matematicheskoi fiziki, 1965, vol. 5, no. 6, pp. 1049-1070.

  7. Mikishev G.N. Eksperimental’nye metody v dinamike kosmicheskikh apparatov (Experimental methods in the dynamics of spacecraft), Moscow, Mashinostroenie, 1978, 248 p.

  8. Greenspan H.P. The theory of rotating fluids. London, Cambridge university press, 1968, 327 p.

  9. Miles J.W. Free — surface oscillations in a rotating liquid, Journal of Fluid Mechanics, 1959, vol. 2, no. 3, pp. 297-305. DOI: 10.1017/S0022112064000143

  10. Zhak S.V. Prikladnaya matematika i mekhanika, 1958, vol. XXII, no. 2, pp. 245-249.

  11. Kostandyan B.A. Prikladnaya mekhanika i tekhnicheskaya fizika, 1960, no. 3, pp. 56-64.

  12. Derendyaev N.V. Doklady AN SSSR, 1983, vol. 272, no. 5, pp. 1073-1076.

  13. Derendyaev N.V., Sandolov V.M. Mashinovedenie, 1986, no. 1, pp. 19-26.

  14. Malashenko S.V., Temchenko M.E. Prikladnaya mekhanika i tekhnicheskaya fizika, 1960, no. 3, pp. 76-80.

  15. Temnov A.N. Kolebaniya stratifitsirovannoi zhidkosti v ogranichennom ob"eme (Oscillations of a stratified fluid in a limited volume), Doctor’s thesis, Moscow, MVTU, 1983, 192 p.

  16. Dokuchaev L.V., Rvalov R.V. Mekhanika tverdogo tela, 1973, no. 2, pp. 6-14.

  17. Ai Min Vin, Temnov A.N. Trudy MAI, 2015, no. 79. URL: https://trudymai.ru/eng/published.php?ID=55633

  18. Yan Naing OO. Trudy MAI, 2023, no. 130. URL: https://trudymai.ru/eng/published.php?ID=174605. DOI: 10.34759/trd-2023-130-09

  19. Temnov A.N., Yan Naing OO. Trudy MAI, 2023, no. 132. URL: https://trudymai.ru/eng/published.php?ID=176845

  20. Pozhalostin A.A., Goncharov D.A. Trudy MAI, 2017, no. 95. URL: https://trudymai.ru/eng/published.php?ID=84412

  21. Pak Songi, Grigor’ev V.G. Trudy MAI, 2021, no. 119. URL: https://trudymai.ru/eng/published.php?ID=159785. DOI: 34759/trd-2021-119-08

  22. Blinkova A.Yu., Ivanov S.V., Kuznetsova E.L., Mogilevich L.I. Trudy MAI, 2014, no. 78. URL: http://trudymai.ru/eng/published.php?ID=53486


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход