On the mechanisms of buckling of modified composites with viscous fibers


Аuthors

Shavelkin D. S.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

e-mail: dshavelkin@inbox.ru

Abstract

The presented work studies stability of modified composites with whiskerized fibers. The following problems are being solved within the framework of the study: the static problem of local loading and the problem of stability of layered cantilever rods made from the composites under study. When solving the static problem of local loading, a modified fiber composite, loaded by compressive forces along the fibers, which is accompanied by various fracturing mechanisms stipulated by the of the fibers bending, is being considered. It appeared that an interfacial layer with adjustable rigidity allowed, with the same volume fraction of reinforcing fibers (for a classical composite, the reinforcing element is fiber, and for the modified composite under consideration, a fiber with nanostructures grown on its surface) achieving significantly greater local stability, determining the characteristic type of micro-damage at compression. When solving the problem of stability of the rods made from the composites under study, layered rods with different laying patterns and different volumetric contents of inclusions were considered. Critical load factors were determined for each of the studied samples. An analysis of the influence of the volume content of the modified fiber on the minimum critical values of compressive stresses showed that the stability of the modified composite can be increased by more than 2 times compared to the stability of a similar classical composite. When studying the stability of layered cantilever rods, it turned out that modification of the fiber with a mustache makes it possible to increase the value of the critical load withstood by the rod by more than 1.9 times compared to the critical load withstood by a rod made of a classic fiber composite with the same volumetric content of inclusions for any of the considered schemes laying of reinforcing fibers.

Keywords:

composite material, Euler stability, local stability, effective properties, three-phase method

References

  1. Polilov A.N. Eksperimental'naya mekhanika kompozitov (Experimental mechanics of composites), Moscow, MGTU im. N.E. Baumana, 2016, 376 p.

  2. Xu J., Zhao Q., Qiao P. A critical review on buckling and post-buckling analysis of composite structures, Frontiers in Aerospace Engineering, 2013, vol. 2 (3), pp. 157-168.

  3. Paĭmushin V.N., Polyakova N.V., Kholmogorov S.A., Shishov M.A. Izvestiya vuzov. Matematika, 2017, no. 9, pp. 89–95.

  4. Paĭmushin V.N., Gazizullin R.K., Shishov M.A. Prikladnaya mekhanika i tekhnicheskaya fizika, 2019, vol. 60, no. 3, pp. 173-185.

  5. Paimushin V.N., Kholmogorov S.A., Makarov M.V., Badriev I.B. Materialy XXIV mezhdunarodnogo simpoziuma imeni A.G. Gorshkova, Moscow, Izd-vo TRP, 2018, vol. 1, pp. 177-179.

  6. Arthur W.L. A review of laminated composite plate buckling, Applied mechanics reviews, 1987, vol. 40 (5), pp. 575-591. DOI: 10.1115/1.3149534

  7. Erkov  A.P.,  Dudchenko    A.A.    Trudy     MAI,     2018,    no.    103.    URL: https://trudymai.ru/eng/published.php?ID=100622

  8. Dudchenko  A.A., Kyong L.K.,   Lur'e S.A. Trudy MAI,   2012, no. 50. URL: https://trudymai.ru/eng/published.php?ID=28792

  9. Vasil'ev V.V.   Kompozitsionnye   materialy:   Spravochnik   (Composite   materials: Directory), Moscow, Mashinostroenie, 1990, 512 p.

  10. Erkov A.P. Prochnost' konstruktsii letatel'nykh apparatov, Trudy TsAGI, no. 2782, 2018, pp. 161-163.

  11. Sapunov V.T. Kompozity i nanostruktury, 2017, vol. 9, no. 1 (33), pp. 45-51.

  12. Dudchenko A.A., Lur'e S.A., Solyaev Yu.O., Zhavoronok S.I., Khaliulin V.I., Batrakov V.V. Konstruktsii iz kompozitsionnykh materialov, 2016, no. 1 (141), pp. 3-11

  13. Lurie S.A., Minhat M. Application of generalized self-consistent method to predict effective elastic properties of bristled fiber composites, Composites B, 2014, vol. 61, pp. 26- 40. DOI: 10.1016/j.compositesb.2014.01.021

  14. Lurie S.A., Minhat M., Tuchkova N. Estimation of effective dynamic properties of bristled fiber composite materials based on self-consistent Eshelby method, Journal of Engineering Mathematics, 2015, vol. 95 (31), pp. 7-29. DOI: 10.1007/s10665-014-9719-0

  15. Lur'e S.A., Kriven' G.I., Rabinskii L.N. Kompozity i nanostruktury, 2019, vol. 11, no. 1, pp. 1-15.

  16. Kriven' G.I.,    Makovskii    S.V.    Trudy    MAI,    2020,    no.    114.    URL: https://trudymai.ru/eng/published.php?ID=118729. DOI: 10.34759/trd-2020-114-03

  17. Kriven' G.I., Shavelkin D.S. Mekhanika kompozitsionnykh materialov i konstruktsii, 2023, vol. 29, no. 1, pp. 81-97.

  18. Qiang S., Ke-zhi L., Hai-liang L., He-jun L., Chang R. Grafting straight carbon nanotubes radially onto carbon fibers and their effect on the mechanical properties of carbon/carbon composites, Carbon, 2012, no. 50, pp. 3943-3960. DOI: 10.1016/j.carbon.2012.03.023

  19. Peng L., Yi-yu F., Peng Z., Hui-min C., Naiqin Z., Wei F. Increasing the interfacial strength in carbon fiber/epoxy composites by controlling the orientation and length of carbon nanotubes grown on the fibers. Carbon, 2011, no. 49, pp. 4665-4673. DOI: 10.1016/j.carbon.2011.06.064

  20. Fu-Hua Z., Rong-Guo W., Xiao-Dong H., Chao W., Li-Ning R. Interfacial shearing strength and reinforcing mechanisms of an epoxy composite reinforced using a carbon nanotube/carbon fiber hybrid, Journal of Material Science, 2019, vol. 44 (13), pp. 3574-3577. DOI: 10.1007/s10853-009-3484-x

  21. Sharma S.P., Lakkad S.C. Compressive strength of carbon nanotubes grown on carbon fiber reinforced epoxy matrix multi-scale hybrid composites, Surface coatings technology, 2010, vol. 205, pp. 350-355. DOI: 10.1016/j.surfcoat.2010.06.055

  22. Lei F., Ke-zhi L., Zi-shu S., Qiang S., He-jun L., Jin-hua L., Ling-jun G. Compressive and interlaminar shear properties of carbon/carbon composite laminates reinforced with carbon nanotube-grafted carbon fibers produced by injection chemical vapor deposition, Materials Science Engineering A, 2015, vol. 626, pp. 449–457. DOI: 10.1016/j.msea.2014.12.044

  23. Vasiliev V.V., Morozov E.V. Advanced mechanics of composite materials and structures, Elsevier, 2018, 856 p.

  24. Hashin Z. Thermoelastic properties and conductivity of carbon/carbon fiber composites, Mechanics of Materials, 1990, vol. 8, pp. 293–308. DOI: 10.1016/0167-6636(90)90049-L

  25. Tsukrov I., Drach B. Elastic deformation of composite cylinders with cylindrically orthotropic layers, International Journal of Solids and Structures, 2010, vol. 42, pp. 2577– 2593. DOI: 10.1016/j.ijsolstr.2009.09.005


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход