Numerical simulation of the preforming process of a thick-walled coupling made of shape memory alloys


Аuthors

Sharunov A. V.

PJSC UAC Sukhoi Design Bureau, 23A, Polikarpova str., Moscow, 125284, Russia

e-mail: aleksej-sharunov@yandex.ru

Abstract

The work deals with the numerical modeling of the pre-deformation process (distribution – increase in the inner radius) of a thick-walled cylindrical coupling made of shape memory alloy (SMA) with the constant pressure in the process of direct thermoelastic phase transformation. The process of elastic, phase and structural deformations accumulation while the SMA coupling cooling through the temperature range of direct martensitic transformation was considered within the framework of the problem.

As part of the work, the process of model integrating of the nonlinear deformation during phase and structural transformations into the finite element complex Simulia AbaQus was performed through the procedure for creating custom material using UMAT technology and explicitly determining the tangent stiffness matrix. The pre-deformation process of a thick-walled cylindrical coupling made of SMA is being considered in a once-cohesive thermomechanical formulation, with account for the effect of the acting stress on the of phase transition temperature values.

The article demonstrates the effect of accounting for the structural transition in the process of a direct thermoelastic phase transition for two types of boundary conditions. Fidelity of the results of the work is confirmed by the validation of the developed software modules based on the results of field tests of elementary samples based on the Ni-Ti system and verification employing known analytical solutions to the boundary value problems of the SMA mechanics.

The results presented in the article may be employed in the design of thermomechanical joint couplings from the SMA.

References

  1. Balunov K.A., Solyaev Yu.O., Golubkin K.S. Trudy MAI, 2023, no. 129. URL: https://trudymai.ru/eng/published.php?ID=173004. DOI: 10.34759/trd-2023-129-04

  2. Sharunov A.V. Trudy MAI, 2023, no. 133. URL: https://trudymai.ru/eng/published.php?ID=177659

  3. Khalov M.O. Trudy MAI, 2012, no. 55. URL: https://trudymai.ru/eng/published.php?ID=30132

  4. Klimov A.K., Klimov D.A., Nizovtsev V.E., Ukhov P.A. Trudy MAI, 2013, no. 67. URL: https://trudymai.ru/eng/published.php?ID=41486

  5. Likhachev V.A., Kuz’min S.L., Kamentseva Z.P. Effekt pamyati formy (Shape memory effect), Leningrad, Izd-vo Leningradskogo universiteta, 1987, 216 p.

  6. Kapgan M., Melton K. Shape memory alloy tube and pipe couplings, Proceedings of Engineering Aspects of Shape Memory Alloys, London, 1990, pp. 137-148.

  7. Tabesh M., Atli K., Rohmer J., Franco B., Karaman I., Boyd J., Lagoudas D. Design of shape memory alloy pipe couplers: modeling and experiments, Proceedings of SPIE 8343, Industrial and Commercial Applications of Smart Structures Technologies, San Diego, 2012, pp. 18. DOI: 10.1117/12.915361

  8. Aerofit, Inc APT Laboratory, 1968-2004. URL: www.aerofit.com

  9. Likhachev V.A., Shimanskii S.R. Vliyanie sostava kompozitsii TiNiNb na ee svoistva i rabotosposobnost' (The influence of the composition of the Ti Ni Nb composition on its properties and performance), Leningrad, 1984. Dep. v VINITI 10.12.84, № 7865-84.

  10. Udovenko V.A., Potapov P.L., Prokoshkin S.D. et al. Metallovedenie i termicheskaya obrabotka metallov, 2000, no. 9, pp. 19–22.

  11. Abramov V.Ya., Aleksandrova N.M., Borovkov D.V. et al. Fizika metallov i metallovedenie, 2006, no. 4 (101), pp. 436–446.

  12. Popov N.N., Prokoshkin S.D., Sidorkin M.Yu. et al. Metally, 2007, no. 1, pp. 71–77.

  13. Popov N.N., Sysoeva T.I., Prokoshkin S.D. et al. Metally, 2007, no. 4, pp. 62–70.

  14. Popov N.N., Aushev A.A., Sysoeva T.I. et al. Metally, 2012, no. 4, pp. 97–105.

  15. Popov N.N., Lar'kin V.F., Presnyakov D.V. et al. Fizika metallov i metallovedenie, 2013, no. 4 (114), pp. 380–390.

  16. Sharunov A.V. Mekhanika kompozitsionnykh materialov i konstruktsii, 2020, vol. 26, no. 2, pp. 174-189.

  17. Mashikhin A.B., Movchan A.A. Izvestiya RAN. Mekhanika tverdogo tela, 2016, no. 3, pp. 100-114.

  18. Mashikhin A.E., Movchan A.A. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mekhanika, 2017, no. 3, pp. 113-128.

  19. Movchan A.A., Kazarina S.A., Sil'chenko A.L. Deformatsiya i razrushenie materialov, 2018, no. 12, pp. 2-11.

  20. Wu D., Sun G., Wu J. The nonlinear relationship between transformation strain and applied stress for nitinol, Materials Letters, 2003, vol. 57, № 7, pp. 1334-1338. DOI: 10.1016/S0167-577X(02)00983-7

  21. Nushtaev D.V., Zhavoronok S.I. Abnormal buckling of thin-walled bodies with shape memory effects under thermally induced phase transitions / In: Recent Developments in the Theory of Shells. Advanced Structured Materials, Berlin, Springer, 2019, vol. 110, pp. 227-250. DOI: 10.1007/978-3-030-17747-8_26

  22. Ruiz-Pinilla J., Montoya-Coronado L., Ribas C., Cladera A. Finite element modeling of RC beams externally strengthened with iron-based shape memory alloy (Fe-SMA) strips, including analytical stress-strain curves for Fe-SMA, Engineering Structures, 2020, vol. 223, no. 15. DOI: 10.1016/j.engstruct.2020.111152

  23. Porenta L., Lavrencic M., Dujc J., Brojan M., Tusek J. Modeling large deformations of thin-walled SMA Structures by shell finite elements, Communications in Nonlinear Science and Numerical Simulation, 2021, vol. 101, no. 55. DOI: 10.1016/j.cnsns.2021.105897

  24. Ho H., Choi E., Park S. Investigating stress distribution of crimped SMA fibers during pullout behavior using experimental testing and a finite element model, Composite Structures, 2021, vol. 272. DOI: 10.1016/j.compstruct.2021.114254

  25. Xolin P., Collard C., Engels-Deutsch M., Zineb T. Finite element and experimental structural analysis of endodontic rotary file made of Cu-based single crystal SMA considering a micromechanical behavior model, International Journal of Solids Structures, 2021, vol. 221. DOI: 10.1016/j.ijsolstr.2021.01.015

  26. Movchan A.A., Movchan I.A., Sil'chenko L.G. Izvestiya RAN. Mekhanika tverdogo tela, 2010, no. 3, pp. 118–130.

  27. Movchan A.A., Sil'chenko L.G., Sil'chenko T.L. Izvestiya RAN. Mekhanika tverdogo tela, 2011, no. 2, pp. 44–56.

  28. Mishustin I.V., Movchan A.A. Izvestiya RAN. Mekhanika tverdogo tela, 2014, no. 1, pp. 37–53.

  29. Mishustin I.V., Movchan A.A. Izvestiya RAN. Mekhanika tverdogo tela, 2015, no. 2, pp. 78–95.

  30. Zolochevskii A.A., Bekker A.A. Vvedenie v ABAQUS (Introduction to ABAQUS), Khar'kov, Garant, 2011, 49 p.

  31. Movchan A.A. Mekhanika kompozitsionnykh materialov i konstruktsii, 2021, vol. 27, no. 3, pp. 343-359.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход