The influence deflectors located near cylinder on drag of combination «cylinder-plates»


Аuthors

Le V. H.*, Frolov V. A.**

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia

*e-mail: halevan@mail.ru
**e-mail: frolov_va_ssau@mail.ru

Abstract

The study of the flow around the circular cylinder is one of the most up-to-date fluid and gas mechanics problems due to its wide application in industry. Here are some examples: wind turbines, towers, high-rise buildings, offshore structures, industrial chimneys and bridge hanger cables. Drag reduction of the cylindrical objects in aviation has been of great interest of many scientists for a long time. Various active and passive methods were applied earlier for the cylinder drag reduction. Active methods are being characterized by their effectiveness and by the fact that they require energy supply from the outside. Passive methods are based on adding extra bodies near the cylinder or geometry changing the cylinder surface, thus, unlike the active methods they do not require energy supply. The basic principle of these methods consists in moving the separation point back downstream, since later separation of the flow leads to the drag force reduction.

This work studies a passive drag reducing method through installing flat plates near the cylinder. The modeling problem was restricted by the two-dimensional case. Velocity and pressure fields near the cylinder, as well as drag coefficient dependencies on the number and relative lengths of deflectors were obtained with the ANSYS Fluent software. The authors found that the drag coefficient of the cylinder combination with one flat deflector and fixation of the back partitioning plate, situated in the horizontal plane of symmetry may reduce significantly the drag coefficient down to minimum value of 0.45.

The data presented can be recommended for the aerodynamic design of the bodies with cylindrical cross section for the drag reduction.

Keywords:

passive and active drag reduction, cylinder-plate system, drag coefficient, Reynolds number

References

  1. Dogval' A.V. Prikladnaya mekhanika i tekhnicheskaya fizika, 2006, vol. 47, no. 4 (278), pp. 60-65.

  2. Kornilov V.I. Teplofizika i aeromekhanika, 2015, vol. 22, no. 4, pp. 429-443.

  3. Abramova K.A., Sudakov V.G. Trudy MAI, 2019, no. 105. URL: https://trudymai.ru/eng/published.php?ID=104133

  4. Zakharenkov M.N. Teplofizika i aeromekhanika, 2007, vol. 14, no. 4, pp. 563-590.

  5. Gaifullin A.M., Khairullin K.G. Prikladnaya matematika i tekhnicheskaya fizika, 2020, vol. 61, no. 6 (364), pp. 91-99. DOI: 10.15372/PMTF20200612

  6. Choi H., Jeon W.P., Kim J. Control of flow over a bluff body, Annual Review of Fluid Mechanics, 2008, vol. 40, pp. 113–139. DOI: 10.1146/annurev.fluid.39.050905.110149

  7. Sakornsin R., Popov S.A. Trudy MAI, 2013, no. 65. URL: http://trudymai.ru/eng/published.php?ID=35943

  8. Skorynina, A.O., Erokhin P.V., Artamonova L.G. Trudy MAI, 2012, no. 61. URL: http://trudymai.ru/eng/published.php?ID=35658

  9. Apelt C.J., West G.S., Szewczyk A.A. The effects of wake splitter plates on the flow past a circular cylinder in the range 104<Re<5×104, Journal of Fluid Mechanics, 1973, vol. 61 (01), pp. 187–198. DOI: 10.1017/S0022112073000649

  10. ANSYS FLUENT, Theory Guide (Release 16.2). ANSYS, Inc., 2015.

  11. Wilcox D.C. Turbulence modeling for CFD. Second Edition. Palm Drive: DCW Industries Inc., 2004, 540 p.

  12. Menter F.R. Two-equation eddy-viscosity turbulence models for engineering applications, AIAA Journal, 1994, vol. 32, no. 8. pp. 269−289. DOI: 10.2514/3.12149

  13. Basohbatnovinzad M., Shams M., Pouryoussefi S.G. et al. Experimental and numerical investigation of flow around an inline square cylinder array at a high Reynolds number, Archive of Applied Mechanics, 2022, vol. 92, pp. 3433–3446. DOI: 10.1007/s00419-022-02284-1

  14. Dewanshu D., Ashwin S., Senthilkumar S. POD analysis of the wake behind a circular cylinder with splitter plate, European Journal of Mechanics, – B /Fluids, 2022, vol. 93, pp. 1-12. DOI: 10.1016/j.euromechflu.2021.12.010

  15. Kotovskii V.N., Nisht M.I., Fedorov P.M. Doklady AN SSSR, 1980, vol. 252, no. 6, pp. 1341-1345.

  16. Kozlova A.S. XXI Vserossiiskii seminar po upravleniyu dvizheniem i navigatsii letatel'nykh apparatov: sbornik trudov. Samara, Izd-vo SNTs RAN, 2019, pp. 46-49.

  17. Anderson E, Szewczyk A. Effects of a splitter plate on the near wake of a circular cylinder in 2 and 3-dimensional flow configurations, Experiments in Fluids, 1997, vol. 23, pp. 161–174. DOI: 10.1016/s0894-1777(97)10009-7

  18. Chzhen P. Otryvnye techeniya (Separated flows), Moscow, Mir, 1972. 298 p.

  19. Wieselsberger C. Neuere Feststellungen über die Gesetze des flüssigkeits und Luftwiderstands, Physikalische Zeitschrift, 1921, vol. 22, pp. 321–328.

  20. Achenbach E. Distribution of local pressure and skin friction around a circular cylinder in cross-flow up to Re=5×106, Journal of Fluid Mechanics, 1968, vol. 34 (4), pp. 625-639.

  21. FrolovV.A., Kozlova A.S. Reducing cylinder drag by adding a plate, AIP Conference Proceeding, U.S.A., 2017, vol. 1893 (1), pp. 030074. DOI: 10.1063/1.5007532


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход