Manufacturing of functional prototype of antenna array for the missile and space equipment using additive technologies
Аuthors
*, **, ***Military industrial corporation «NPO Mashinostroyenia», 33, Gagarina str., Reutov, Moscow region, 143966, Russia
*e-mail: a.s.ermilov@vpk.npomash.ru
**e-mail: a.yu.balashov@vpk.npomash.ru
***e-mail: 940@vpk.npomash.ru
Abstract
The article discusses the development and manufacture of an operating prototype of an eight-element antenna array, which operates in the L1 frequency range of satellite radio navigation systems, using additive technologies. The widespread use of an antenna array for receiving navigation signals is currently found in adaptive noise protection systems with digital generation of a radiation pattern of the required shape. Calculations of the radio technical characteristics of an elementary emitter of antenna array providing operability in the L1 frequency range of satellite radio navigation systems have been carried out. The emitter is made in the form of a ceramic microstrip antenna, which consists of a silver emitting element, a ceramic substrate, an exciting pin and a metal ground. The profile of the radiating element is made in the form of a square element with chamfers at the edges, so that the antenna element has a circular polarization of the electromagnetic field. The design of the antenna array consisting of a base and 8 radiators is described. The configuration of the developed antenna array was chosen taking into account the provision of minimum geometric dimensions and minimizing interference between the emitters. The maximum number of radio interference that can be suppressed by the antenna array is one less than the number of array emitters and is 7. To confirm the operability of the selected antenna array configuration, a working prototype consisting of microstrip ceramic radiators and a base was made. The base is a cutout from the side surface of a cylinder with a diameter of ~ 400 mm. The base is made of PLA plastic using 3D printing technology. To form a metal ground on the surface of the base, metallization with a thickness of 10 microns was carried out. The results of the VSWR measurements confirmed the operability of the antenna array in the L1 frequency range of the GLONASS and GPS satellite radio navigation systems. The results of calculations and measurements of the VSWR were compared. Analysis of the results of calculations and measurements of VSWR emitters confirmed the correctness of the selected geometric parameters of the antenna array. A slight difference in the characteristics of VSWR emitters is caused by the influence of the edges of the base located close to the emitter. The developed antenna array can be applied in noise-protected receivers of navigation signals with adaptive formation of radiation pattern.
Keywords:
3D printing, additive technologies, GPS/ GLONASS antenna, antenna arrayReferences
- Los' V.F. Mikropoloskovye i dielektricheskie rezonatornye antenny. SAPR-modeli: metody matematicheskogo modelirovaniya (Microstrip and dieletrical echo box antennas. CAD models: mathematical model approaches), Moscow, IPRZhR, 2002, 96 p.
- Zheksenov M.A., Pechurin V.A., Volchenkov A.S. Trudy MAI, 2011, no. 45. URL: https://www.trudymai.ru/eng/published.php?ID=25385&PAGEN_2=2
- Chistyakov V.A. Trudy MAI, 2019, no. 105. URL: https://www.trudymai.ru/eng/published.php?ID=104239
- Grigor'ev L.N. Tsifrovoe formirovanie diagrammy napravlennosti v fazirovannykh antennykh reshetkakh (Digital generation of the radiation pattern in phased array antennas), Moscow, Radiotekhnika, 2010, 141 p.
- Ksendzuk A.V. Uspekhi sovremennoi radioelektroniki, 2003, no. 11, pp. 44-54.
- Perov A.I., Kharrisov V.N. GLONASS. Printsipy postroeniya i funktsionirovaniya, (GLONASS. Principles of construction and operation), Moscow, Radiotekhnika, 2010, 800 p.
- Yaskin Yu.S., Kharisov V.N., Efimenko V.S., Boiko S.N., Bystrakov S.G., Pastukhov A.V., Savel'ev S.A. Radiotekhnika, 2010, no. 7, pp. 127-136.
- Slyusar V.I. Elektronika: NTB, 2009, no. 1, pp. 74-78.
- Zimin A.S., Krinitskii G.V. Trudy MAI, 2012, no. 51. URL: https://www.trudymai.ru/eng/published.php?ID=29151
- Gnedak P.V. Fazovyi sintez nulei v diagrammakh napravlennosti aperturnykh antenn na osnove metoda aperturnykh ortogonal'nykh polinomov (Zero Phase Synthesis in the Aperture Antenna Radiation Patterns Based on the Aperture Orthogonal Polynom Method), PhD thesis synopsis, Moscow, 2009, 20 p.
- Tyapkin V.N., Dmitriev D.D., Moshkina T.G. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta im. M.F. Reshetneva, 2012, no. 3 (43), pp. 113-119.
- Demidenko E.V., Kuz'min S.V., Kirik D.I. Elektronika i mikroelektronika SVCh, 2018, vol. 1, pp. 491-495.
- Astapov V.Yu., Khoroshko L.L., Dudkov K.V. Trudy MAI, 2018, no. 101. URL: https://www.trudymai.ru/eng/published.php?ID=96683
- Kulikov G.G., Kruzhkov V.N., Dron' E.A., Kolesnikov A.A., Kruzhkov O.N., Sharipova A.M. Vvedenie v informatsionnye sistemy tsifrovogo modelirovaniya (Introduction into the digital simulation information systems), Ufa: UGATU, 2016, 184 p.
- Balashov A.Yu., Ermilov A.S., Gyul'magomedov N.Kh. Materialy VII Mezhdunarodnoi konferentsii «Additivnye tekhnologii: nastoyashchee i budushchee»: sbornik trudov. Moscow, Vserossiiskii nauchno-issledovatel'skii institut aviatsionnykh materialov NITs "Kurchatovskii institut", 2021, pp. 180-189.
- Endogur A.I., Kravtsov V.A., Soloshenko V.N. Trudy MAI, 2014, no. 72. URL: https://www.trudymai.ru/eng/published.php?ID=47572
- Kuznetsov P.A., Vasil'eva O.V., Telenkov A.I., Savin V.I., Bobyr' V.V. Novosti materialovedeniya. Nauka i tekhnika, 2015, no. 2, pp 4-10.
- Fedorova P.S. Alleya nauki, 2017, no. 8, pp. 447-454.
- Tarasova T.V., Skornyakov I.A. Avtomatizatsiya i upravlenie v mashinostroenii, 2017, no. 3, pp. 7-11.
- Kirin B.S., Kuznetsova K.R., Petrova G.N., Sorokin A.E. Trudy VIAM, 2018, no. 5 (65), pp. 34-43.
- Mikhailin Yu.A. Konstruktsionnye polimernye kompozitsionnye materialy (Constructive polymer composite materials), Saint Petersburg, Nauchnye osnovy i tekhnologii, 2008, 822 p.
Download