Investigation of hydrodynamic processes in cooling systems of liquid-propellant rocket engines with additive porous structures


Аuthors

Basharina T. A.1*, Levina A. V.1**, Glebov S. E.1***, Shmatov D. P.1****, Drozdov I. G.2*****

1. LLC SPE "InterPolaris", Pervomayskaya str., 2, Novovoronezh, Voronezh Region, Russia, 396073
2. Voronezh State Technical University, VSTU, 14, Moskovsky prospect, Voronezh, 394026, Russia

*e-mail: ta@interpolyaris.ru
**e-mail: levinaav@interpolyaris.ru
***e-mail: glebovse@interpolyaris.ru, se_glebov@mail.ru
****e-mail: shmatov@inlerpolyaris.ru
*****e-mail: rd-vgtu@mail.ru

Abstract

The development of rocket engine construction is characterized by an increase in the flight characteristics, service life, reliability and energy efficiency of liquid rocket engines (LPRE), which makes it urgent to improve and modernize the cooling systems of liquid rocket engines. In modern mechanical engineering there is no theoretical and experimental basis and proven analytical methods for calculating the characteristics of additive porous structures and the hydrodynamics of the working environment in the internal volume with full geometric identification of the in-pore space. To increase the service life and energy characteristics of rocket engines, innovative design solutions and new production technologies are being introduced, the combination of which is reflected in the cooling system of a rocket engine with porous structures manufactured by additive manufacturing. A computational experiment and research hydrodynamic tests of the cooling tract of an engine with additive porous structures were carried out. In the course of research using the method of polynomial approximations, the criterion dependences of the viscous and inertial resistance coefficients of a porous structure manufactured by an additive method were determined. The applicability of the laws of the theory of filtration of porous bodies in additive porous structures with full geometric identification has been proven by setting up a mathematical model taking into account the superposition of viscous and inertial drag coefficients. The influence of the degree of anisotropy of the medium on the reliability of the computational experiment using a mathematical model taking into account the superposition of the viscous and inertial components has been established.

Keywords:

liquid rocket engine, porous structure, cooling path, hydraulic research, mathematical modeling, hydrodynamic testing, additive manufacturing

References

  1.  Pelevin F.V., Ponomarev A.V., Semenov P.Yu. Izvestiya vuzov. Mashinostroenie, 2014, no. 5, pp. 10-19.

  2. Pelevin F.V., Avraamov N.I., Orlin S.A., Sintsov A.L. Inzhenernyi zhurnal: nauka i innovatsii, 2013, no. 4, pp. 1-14.

  3. Yagodnikov D.A., Aleksandrenkov V.P., Kovalev K.E., Grigor'yants A.G., Drenin A.A. Vestnik MGTU im. N.E. Baumana. Mashinostroenie, 2019, no. 6, pp. 41-52.

  4. Pelevin F.V., Ponomarev A.V., Semenov P.Yu. Izvestiya vuzov. Mashinostroenie, 2015, no. 6, pp. 74-81.

  5. Artemov A.L., Dyadchenko V.Yu., Luk'yashko A.V. et al. Kosmicheskaya tekhnika i tekhnologii, 2017, no. 1, pp. 50-62.

  6. Pelevin F.V. Izvestiya vuzov. Mashinostroenie, 2016, no. 2, pp. 42-52.

  7. Heat Transfer in Porous Media Applied to Liquid Rocket Engines. URL: https://www.researchgate.net/publication/312472090_Heat_Transfer_in_Porous_Media_Applied_to_Liquid_Rocket_Engines

  8. Zeigarnik Yu.A., Ivanov F.P. 5-aya Rossiiskaya natsional'naya konferentsiya po teloploobmenu, Moscow, Izd-vo MEI, 2010, vol. 5, pp. 172–175.

  9. Polyaev V.M., Maiorov V.A., Vasil'ev L.L. Gidrodinamika i teploobmen v poristykh elementakh konstruktsii letatel'nykh apparatov (Hydrodynamics and heat transfer in porous structural elements of aircraft), Moscow, Mashinostroenie, 1988, 168 p.

  10. Belov S.V. Poristye metally v mashinostroenii (Porous metals in mechanical engineering), Moscow, Mashinostroenie, 1981, 247 p.

  11. Rotermel' A.R., Yashkov S.A., Shevchenko V.I. Trudy MAI, 2021, no. 119. URL: https://trudymai.ru/eng/published.php?ID=159783. DOI: 10.34759/trd-2021-119-06

  12. Kovalev P.I., Mende N.P. Al'bom sverkhzvukovykh techenii (Album of supersonic flows), Saint Petersburg, Izd-vo Politekhnicheskogo universiteta, 2011, 251 p.

  13. Nekrasov B.B. Gidravlika i ee primeneniya na letatel'nykh apparatakh (Hydraulics and its applications on aircraft), Moscow, Mashinostroenie, 1967, 265 p.

  14. Frik P.G. Turbulentnost': modeli i podkhody (Turbulence: models and approaches), Perm', Perm State Technical University, 1998, 108 p.

  15. Shlikhting G. Teoriya pogranichnogo sloya (Boundary Layer Theory), Moscow, Nauka, 1974, 712 p.

  16. Ignatkin Yu.M., Konstantinov S.G. Trudy MAI, 2012, no. 57. URL: https://trudymai.ru/eng/published.php?ID=30875

  17. Loitsyanskii L.G. Mekhanika zhidkosti i gaza (Mechanics of liquid and gas), Moscow, Drofa, 2003, 846 p.

  18. Anikeev A.A., Molchanov A.M., Yanyshev D.S. Osnovy vychislitel'nogo teploobmena i gidrodinamika (Fundamentals of computational heat transfer and fluid dynamics), Moscow, MAI, 2010, 149 p.

  19. Abramovich G.N. Teoriya turbulentnykh strui (Theory of turbulent jets), Moscow, Gosudarstvennoe izdatel'stvo fiziko-matematicheskoi literatury, 1960, 715 p.

  20. Baklanov A.V., Krasnov S.D., Garaev A.I. Trudy MAI, 2020, no. 113. URL: https://trudymai.ru/eng/published.php?ID=117960. DOI: 10.34759/trd-2020-113-03


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход