Methodology for increasing the reliability and efficiency of on-board radio equipmentstructure at the early stages of design


Аuthors

Kuznetsov A. S.*, Kruchinin A. A.**, Ushkar M. N.***

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: kuznetsovas@mai.ru
**e-mail: andru10092000@gmail.com
***e-mail: ushkarmn@mai.ru

Abstract

The design of the construct of on-board radio equipment  is characterized by the requirements of increasing reliability, minimizing weight and size characteristics, limiting power consumption, as well as reducing development time and cost. In this case, the parameters of the using cooling systems, have a significant impact on the design. The most common way reducing of the temperature of the components of the on-board radio equipment is the using of the forced air cooling systems. In this regard, there is a need to optimize cooling systems and predict their parameters at the early stages of design. The computational and experimental methodology of the parametric synthesis of forced air cooling systems of on-board electronic equipment structures is consider in this article. This methodics makes possible to increase the efficiency of the cooling system and the reliability of the design of on-board radio equipment as a whole. The algorithms of the calculating of the parameters of various variants of the forced air cooling systems for heat-loaded modules are describes in this article. The obtained results are confirmed by 3D modeling which use a computer-aided design system of the development of the design of the onboard electronic equipment. This methodology allow synthesize a preferable, version of the forced air cooling system for a heat-loaded module, that makes it possible to increase reliability, minimize weight and size characteristics and power consumption of the on-board electronic equipment and also reduce the development time and cost of the design.

Keywords:

Cooling systems, Reliability of on-board radio equipment, Loop heat pipes, Remote heatsink, 3D thermal model

References

  1. Chekanov A.N. Raschety i obespechenie nadezhnosti elektronnoi apparatury (Calculations and ensuring the reliability of electronic equipment), Moscow, KnoRus, 2014, 438 p.
  2. Starenchenko A.V. Razrabotka metodiki konstruirovaniya teplonagruzhennykh BRLS malorazmernykh LA (Development of a methodology for designing heat-loaded radars of small-sized aircraft), Doctor's thesis, Moscow, 2018, 118 p.
  3. Dul'nev G.N. Teoriya teplo- i massoobmena (Theory of heat and mass transfer), Saint Petersburg, NIU ITMO, 2012, 195 p.
  4. Rotkop L.L., Spokoinyi Yu.E. Obespechenie teplovykh rezhimov pri konstruirovanii radioelektronnoi apparatury (Ensuring thermal conditions in the design of radio-electronic equipment), Moscow, Sovetskoe radio, 1976, 232 p.
  5. Ulitenko A.I., Gurov V.S., Pushkin V.A. Printsipy postroeniya individual'nykh sistem okhlazhdeniya elektronnykh priborov i ustroistv (Pushkin Principles of constructing individual cooling systems for electronic devices and devices), Moscow, Goryachaya liniya - Telekom, 2012, 286 p.
  6. Borodin S.M. Obespechenie teplovykh rezhimov v konstruktsiyakh radioelektronnykh sredstv (Providing thermal conditions in the designs of radio-electronic devices), Ul'yanovsk, UlGTU, 2008, 52 p.
  7. Muratov A.V., Tsipina N.V. Sposoby obespecheniya teplovykh rezhimov REC (Methods for ensuring thermal conditions RES), Voronezh, Voronezhskii gosudarstvennyi tekhnicheskii universitet, 2007, 96 p.
  8. Maidanik Yu.F. Elektronika NTB, 2017, no. 6, pp. 122-130.
  9. Kuznetsov A.S., Ushkar M.N. Radiotekhnika, 2023, no. 9, pp. 51-62.
  10. Maidanik Yu.F., Vershinin S.V. Teplofizika vysokikh temperatur, 2022, vol. 60, no. 3, pp. 407-414.
  11. Novogorodtsev E.V., Koltok N.G., Karpov E.V. Trudy MAI, 2023, no. 133. URL: https://trudymai.ru/eng/published.php?ID=177662
  12. Kraev V.M., Yanyshev D.S. Trudy MAI, 2010, no. 37. URL: https://trudymai.ru/eng/published.php?ID=13411
  13. Pronina P.F. Trudy MAI, 2023, no. 130. URL: https://trudymai.ru/eng/published.php?ID=174599. DOI: 10.34759/trd-2023-130-04
  14. Kopeika E.A., Verbin A.V. Trudy MAI, 2023, no. 128. URL: https://trudymai.ru/eng/published.php?ID=171411. DOI: 10.34759/trd-2023-128-22
  15. Dobryanskii V.N., Rabinskii L.N., Radchenko V.P., Solyaev Yu.O. Trudy MAI, 2018, no. 101. URL: https://trudymai.ru/eng/published.php?ID=98252
  16. Orlov A.I. Teoriya prinyatiya reshenii (Decision theory), Moscow, Ekzamen, 2010, 574 p.
  17. Belov V.V., Lopatin A.K. Sovremennye naukoemkie tekhnologii, 2019, no. 8, pp. 14-19.
  18. Ovchinnikov S.V. Konvektivnyi teploobmen (Convective heat transfer), Saratov, SGU imeni N.G. Chernyshevskogo, 2015. URL: http://elibrary.sgu.ru/uch_lit/1483.pdf
  19. Egorov V.I. Primenenie EVM dlya resheniya zadach teploprovodnosti (Application of computers for solving heat conduction problems), Saint Petersburg, GU ITMO, 2006, 77 p.
  20. Al'movskii A.A., Sobachkin A.A., Odintsov E.V., Kharitonovich A.I., Ponamarev N.B. SolidWorks. Komp'yuternoe modelirovanie v inzhenernoi praktike. (Application of computers for solving heat conduction problems), Saint Petersburg, BKhV- Peterburg, 2005, 800 p.
  21. Rotkop L.L., Spokoinyi Yu.E. Obespechenie teplovykh rezhimov pri konstruirovanii radioelektronnoi apparatury (Providing thermal modes when designing radio-electronic equipment), Moscow, Sovetskoe radio, 1976, 232 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход