Study of the fatigut strenght of layered polymer composite materials taking into account damage


Аuthors

Bogomolova A. D.*, Palchikov D. S.**

Central Institute of Aviation Motors named after P.I. Baranov, CIAM, 2, Aviamotornaya str., Moscow, 111116, Russia

*e-mail: adbogomolova@ciam.ru
**e-mail: dspalchikov@ciam.ru

Abstract

The presented article deals with the experimental study of damage growth in a polymer composite material (PCM) under cyclic loading (compression). The authors considered four damage categories and various failure mechanisms that follow alternatively. Initially, at the first stage, the matrix cracks inside all layers due to the tension along the matrix-fiber interface. At the second stage, the composite delaminates into separate layers under the action of interlayer shear. When the maximum load is reached, the fibers begin to break. At the fourth stage, the sample is destroyed. Cyclic tests of damaged PCM samples were employed to obtain the dependences of the damage size and residual strength on the number of loading cycles. Application of non-destructive testing methods (ultrasonic flaw detection) for measuring the damage size in PCM is demonstrated. The results of the said studies were employed to develop an approach to assessing the permissible damage level for the PCM parts. The proposed approach is based on the analysis of changes in the residual strength of the damaged carbon fiber reinforced plastic depending on the number of loading cycles. The effect of moisture on the strength of damaged PCM was studied as well, comparison of the results was performed, and the rate of damage growth inside the material was determined.

Keywords:

polymer composite material (PCM), strength, damage, cyclic compression tests

References

  1. Anoshkin A.N., Zuiko V.Yu., Osokin V.M., Pisarev P. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mekhanika, 2016, no. 2, pp. 58-21. DOI: 10.15593/perm.mech/2016.2.01
  2. ASTM D6264/D6264M - Standard Test Method for Measuring Damage Resistance of Fiber-Reinforced Polymer-Matrix Composite to Concentrated Quasi-Static Indentation Force. URL: https://www.astm.org/d6264_d6264m-23.html
  3. Ilcewicz L. Past experiences and future trends for composite aircraft structure 11/10/09 montana state university seminar FAA CS&TA, Composites. 2009. URL: http://www.coe.montana.edu/me/faculty/cairns/Composites
  4. GOST R 56787-2015. Kompozity polimernye. Nerazrushayushchii kontrol' (GOST R 56787-2015. Polymer composites. Non-destructive testing), Moscow, Standartinform, 2016, 66 p.
  5. Karimbaev T.D., Pal'chikov D.S. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta, 2014, no. 5 (47), ch. 1, pp. 96-105.
  6. Ogibalov P.M. et al. Konstruktsionnye polimery. V 2 kn. (), Moscow, Izdatel'stvo Moskovskogo universiteta, 1972. Book. 1. – 323 p.; Book. 2. – 306 s.
  7. Strizhius V.E. Materialovedenie. Energetika, 2020, vol. 26, no. 3, pp. 20–32. DOI: 10.18721/JEST.26302
  8. Alan T. Nettles. Damage Tolerance of Composite Laminates from an Empirical Perspective, NASA, Marshall Space Flight Centre, 2009, 26 p.
  9. David Broek. Osnovy mekhaniki razrusheniya (), Moscow, Vysshaya shkola, 1980, 368 p.
  10. ASTM D5229. Standard Test Method for Moisture Absorption Properties and Equilibrium Conditioning of Polymer Matrix Composite Materials. URL: https://www.astm.org/d5229_d5229m-92r10.html
  11. Sha Mingun, Sun' In. Trudy MAI, 2022, no. 126. URL: https://trudymai.ru/eng/published.php?ID=168996. DOI: 10.34759/trd-2022-126-10
  12. Medvedskii A.L., Martirosov M.I., Khomchenko A.V. Trudy MAI, 2022, no. 124. URL: https://trudymai.ru/eng/published.php?ID=166912. DOI: 10.34759/trd-2022-124-06
  13. Golovan V.I., Dudar'kov Yu.I., Levchenko E.A., Limonin M.V. Trudy MAI, 2020, no. 110. URL: https://trudymai.ru/eng/published.php?ID=112830. DOI: 10.34759/trd-2020-110-5
  14. Karimbaev T.D. Mezhdunarodnaya nauchno-tekhnichesaya konferentsiya «Problemy i perspektivy razvitiya dvigatelestroeniya»: sbornik dokladov. Samara, Samarskii natsional'nyi issledovatel'skii universitet imeni akademika S.P. Koroleva, 2021, vol. 2, pp. 370-372.
  15. Kintsis T.Ya., Roze A.V., Zhigun I.G. Metody staticheskikh ispytanii armirovannykh plastikov (Methods of static testing of reinforced plastics), Riga, Zinatne, 1972, 227 p.
  16. Lekhnitskii S.G. Teoriya uprugosti anizotropnogo tela (Theory of elasticity of an anisotropic body), Moscow, Nauka, 1971, 415 p.
  17. Chamis K. Kompozitsionnye materialy. Analiz i proektirovanie konstruktsii. T. 8. Ch. 2. (Composite materials. Analysis and design of structures. Vol. 8. Part 2.), Moscow, Mashinostroenie, 1978, 262 p.
  18. Bazhenov C.L. Mekhanika i tekhnologiya kompozitsionnykh materialov (Mechanics and technology of composite materials), Dolgoprudnyi: Izdatel'skii Dom «Intellekt», 2014, 328 p.
  19. Karimbaev T.D., Luppov A.A., Afanas'ev D.V., Pal'chikov D.S. Dvigatel', 2015, no. 1, pp. 4-10.
  20. Gol'denblat I.I., Kopnov V.A. Kriterii prochnosti anizotropnykh materialov (Criterion of strength of anisotropic materials), Moscow, Mashinostroenie, 1968, 192 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход