Rationale for Adaptive Accelerometer Inverter Adjustable Current Source Scheme


Аuthors

Vatutin M. A.*, Zubkov A. V., Butyrin A. V.

Mlitary spaсe Aсademy named after A.F. Mozhaisky, Saint Petersburg, Russia

*e-mail: vka@mil.ru

Abstract

The article describes a method allowing changing the conversion factor of a pendulum accelerometer, operating in the self-oscillating mode, due to application of the developed circuit of the controlled current source of the reverse converter for the accelerometer parameters adjusting to the perturbing factors.
Solving the problem of the perturbing factors and disturbances generated by them is possible by adjusting characteristics of the inertial sensors to minimize errors, i.e. adapting the sensors characteristics, which will allow forming optimal characteristics at the given flight mode by the parametric identification of the perturbing factors, ensuring accuracy of the navigation problem solution.
The proposed rationale of the controlled current source circuit is based on the provisions of State Standard R 8.673-2009 “Smart sensors and smart measuring systems. Basic terms and definitions”. The initial data are parameters of the compensation circuits ща the pendulum accelerometer, information on the stability of the employed radio elements, as well as the error models of the converter.
The authors propose applying an electrically controlled electronic current source in a reverse converter of a pendulum accelerometer operating in self-oscillating mode, which allows implementing both discrete switching of the current value and its smooth change.
Application of the adjustable current source allows adjusting the self-oscillating accelerometer to the specified measurement ranges required in various modes, and ensure the ability to adjust smoothly the current value, necessary to implement the accelerometer adaptability function.
The rationale considered in the article includes the development of an electrical circuit of a controlled electronic current source and its stability assessment.
The proposed rationale for the controlled current source scheme may be employed by the specialists while design and manufacture of adaptive accelerometers.

Keywords:

adaptive accelerometer, strapdown inertial navigation system, self-oscillating mode, reverse converter, stable current

References

  1. Vatutin M.A., Klyuchnikov A.I., Fominov I.V. IV Vserossiiskaya nauchno-prakticheskaya konferentsiya «Sovremennye problemy sozdaniya i ekspluatatsii vooruzheniya, voennoi i spetsial'noi tekhniki»: sbornik trudov. Saint Petersburg, VKA imeni A.F.Mozhaiskogo, 2018, pp. 23–28.
  2. Klyushnikov V.Yu. Vozdushno-kosmicheskaya sfera, 2019, no. 3, pp. 58-71.
  3. Prokhortsov A.V., Minina O.V. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2019, no. 10, pp. 301–305.
  4. Golyakov A.D., Richnyak A.M., Fominov I.V. Trudy MAI, 2022, no. 126. URL: https://trudymai.ru/eng/published.php?ID=169009. DOI: 10.34759/trd-2022-126-23
  5. Diligenskaya A.N. Identifikatsiya ob"ektov upravleniya (Identification of control objects), Samara, Samarskii gosudarstvennyi tekhnicheskii universitet, 2009, 136 p.
  6. Mironov V.I., Fominov I.V., Maletin A.N. Trudy SPIIRAN, 2015, no. 3 (40), pp. 93–109.
  7. Pelevin A.E. Giroskopiya i navigatsiya, 2014, no. 4 (87), pp. 111–120.
  8. You J., Wang J., Li C., Wu H., Fu Z. Parameter identification and perturbation algorithm of parallel type six-axis accelerometer, Journal of Vibration and Shock, 2019, vol. 38, no. 1, pp. 134–141. DOI: 10.13465/j.cnki.jvs.2019.01.020
  9. Vatutin M.A., Klyuchnikov A.I., Petrov D.G., Sudar' Yu.M. Trudy MAI, 2023, no. 128. URL: https://trudymai.ru/eng/published.php?ID=171406. DOI: 10.34759/trd-2023-128-18
  10. Besekerskii V.A., Popov E.P. Teoriya sistem avtomaticheskogo regulirovaniya (Theory of automatic control systems), Moscow, Nauka, 1975, 768 p.
  11. Vatutin M.A., Klyuchnikov A.I. Izvestiya vuzov. Priborostroenie, 2023, vol. 66, no 4, pp. 276–284.
  12. Vatutin M.A., Kuz'michev Yu.A., Buyankin M.P. Vserossiiskaya nauchno-prakticheskaya konferentsiya «Problemy sozdaniya i primeneniya malykh kosmicheskikh apparatov i robototekhnicheskikh sredstv v interesakh Vooruzhennykh Sil Rossiiskoi Federatsii»: sbornik trudov. Saint Petersburg, VKA im. A.F.Mozhaiskogo, 2016, vol. 3, pp. 153–157.
  13. Aman E.A. Modeli i metodiki upravleniya rezul'tativnost'yu sozdaniya avtokolebatel'nykh mikromekhanicheskikh akselerometrov (Models and methods for managing the effectiveness of creating self-oscillating micromechanical accelerometers), Saint Petersburg, GUAP, 2019.
  14. Vatutin M.A., Buyankin M.P., Klyuchnikov A.I. Vestnik Rossiiskogo novogo universiteta. Seriya: Slozhnye sistemy: modeli, analiz i upravlenie, 2020, no. 1, pp. 55–59.
  15. GOST R 8.673-2009. Gosudarstvennaya sistema obespecheniya edinstva izmerenii (GSI). Datchiki intellektual'nye i sistemy izmeritel'nye intellektual'nye. Osnovnye terminy i opredeleniya (State system for ensuring the uniformity of measurements (GSI). Intelligent sensors and intelligent measuring systems. Basic terms and definitions), Moscow, Standartinform, 2019.
  16. Pushkarev M.A. Komponenty i tekhnologii, 2007, no. 6, pp. 71–76.
  17. Luchko S.V., Vatutin M.A. Izvestiya VUZov. Priborostroenie, 2005, vol .48, no. 6, pp. 62–70.
  18. Vatutin M.A., Klyuchnikov A.I. Trudy MAI, 2022, no. 127. URL: https://trudymai.ru/eng/published.php?ID=170355. DOI: 10.34759/trd-2022-127-22
  19. Ermakov P.G., Gogolev A.A. Trudy MAI, 2021, no. 117. URL: https://trudymai.ru/eng/published.php?ID=156253. DOI: 10.34759/trd-2021-117-11
  20. Raspopov V.Ya. Mikromekhanicheskie pribory (Micromechanical devices), Moscow, Mashinostroenie, 2007, 400 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход