Technique perfection of the exhaust mixer representation in the turbofan mathematical model the with additional computational and experimental data using
Аuthors
*, **Central Institute of Aviation Motors named after P.I. Baranov, CIAM, 2, Aviamotornaya str., Moscow, 111116, Russia
*e-mail: yaezrokhi@ciam.ru
**e-mail: 30105@ciam.ru
Abstract
In the presented article the basic problems of the exhaust mixer (EM) representation in mathematical models (MM) of turbofan with the common nozzle (TFEmix) are considered. The analysis of the standard approach to modeling the EM which is based on a full mixing assumption are given. Shortcomings of such way representation of mixing process of the core and by-pass flows in EM are shown.
The new approach to formation of the EM mathematical model with additional computational and experimental data using is offered.
Perfection of the mixer MM is offered to execute in three directions:
the «gas-dynamic» areas of the core and by-pass contours exit FII and FI should be
-amended;
-additional total pressure losses of the "mixed" stream σadd should be introduced;
-"incompleteness" of the streams mixing on the EM should be estimated.
In the first direction of EM mathematical model perfection the ratio of the exit areas on FII/FI similar to the real engine is set. From the equation of the consumption the total area on an input in mixing device Fsum is determined. Then each of the areas on an input in the mixer on known Fsum and FII/FI is determined.
For realization of the second direction of MM EM perfection it is necessary to make computational and experimental researches to determine "additional" full pressure losses of the "mixed" stream σadd on various modes. Value of these losses should be presented in the form of the attitude to the reduced velocity λmix on an exit from the mixer σadd =f(λmix). On value of "additional" losses σadd it is necessary to correct for value of full pressure р*mix received as a result of calculation of "ideal" mixing.
In the third direction of the MM EM perfection it is used systems of the equations of streams, describing incomplete mixing. For maintenance of conformity between quantity of the equations and required values it is required to determine two parameters in addition. These parameters are shares of consumptions of streams participating in mixing from acted on input EM. Values of the given parameters can be received computational by on more complex 3D to models of the mixing device.
It is in summary noted, that application of the offered approaches to calculation EM will allow to reflect more precisely working process and to receive with the TFEmix parameters.
Keywords:
mathematical model of the engine, mixing device, mixing of gas streamsReferences
- Skibin V.A., Solonin V.I. Inostrannye aviatsionnye dvigateli (Foreign aircraft engines), Moscow, Aviamir, 2005, 592 p.
- Raw Power. AIR International. 2014. Special “F-35 Lightning II: An Air Warfare Revolution”, pp. 32-39.
- Oates G.C. (ed.) Aerothermodynamics of Aircraft Engine Components, American Institute of Aeronautics and Astronautics, Inc. Education Series, 1985, pp. 47-50. DOI: 10.2514/4.861338
- Ezrokhi Yu.A., Fokin D.B., Nyagin N.V. Aerospace MAI Journal, 2020, vol. 27, no. 2, pp. 99-111. DOI: 10.34759/vst-2020-2-99-111
- Posadov V.V., Kikot' N.V., Posadov V.V., Shumikhina O.V. Patent na poleznuyu model' RU 210512U1, 18.04.2022. Byul. no. 11.
- Dolgomirov B.A., Lazarev S.V., Sladkov M.K. Patent na izobretenie RU 2480604 C1, 27.04.2013. Byul. no. 12.
- Mashinostroenie. Entsiklopediya. T. IV-21. Samolety i vertolety. Kn. 3. Aviatsionnye dvigateli (Engineering. Encyclopedia. Vol. IV-21. Planes and helicopters. Book 3. Aircraft engine), Moscow, Mashinostroenie, 2010, pp. 341-353.
- Druzhinin L.N., Shvets L.I., Lanshin A.I. Trudy TsIAM, 1979, no. 832, 44 p.
- Nechaev Yu.N., Fedorov R.M., Kotovskii V.N., Polev A.S. Teoriya aviatsionnykh dvigatelei. Ch.1 (Jet engines theory), Moscow, Izd-vo VVIA im. prof. N.E. Zhukovskogo, 2006, 366 p.
- Kotovskii V.N., Vovk M.Yu. Matematicheskoe modelirovanie rabochego protsessa i kharakteristik GTD pryamoi reaktsii (Mathematical modeling of the direct reaction GTE operation and performances), Moscow, Izd-vo «Pero», 2018, 309 p.
- Dvigateli aviatsionnye gazoturbinnye. Metod i podprogrammy rascheta termodinamicheskikh parametrov vozdukha i produktov sgoraniya uglevodorodnykh topliv. Rukovodyashchii tekhnicheskii material aviatsionnoi tekhniki. RTM 1677-83, 68 p. URL: http://www.1bm.ru/techdocs/kgs/ost/244/info/47340/
- Andreev S.P., Druzhinin L.N. Trudy TsIAM, 1987, no. 1238, pp. 37-55.
- Druzhinin L.N., Lanshin A.I. Trudy TsIAM, 1987, no. 1238, pp. 55-63.
- Ezrokhi Yu.A., Kalenskii S.M. Trudy MAI, 2022, no. 122. URL: https://trudymai.ru/eng/published.php?ID=164276. DOI: 10.34759/trd-2022-122-19
- Gol'berg F.D., Gurevich O.S., Petukhov A.A. Trudy MAI, 2012, no. 58. URL: https://trudymai.ru/eng/published.php?ID=33278
- Kuz'michev V.S., Krupenich I.N., Rybakov V.N. et al. Trudy MAI, 2013, no. 67. URL: https://trudymai.ru/eng/published.php?ID=41518
- Kostyukov V.M., Kapyrin N.I. Trudy MAI, 2011, no. 49. URL: https://trudymai.ru/eng/published.php?ID=28075
- Vovk M.Yu., Kulalaev V.V. Trudy MAI, 2018, no. 101. URL: http://trudymai.ru/eng/published.php?ID=96932
- Mitsel' A.A., Shelestov A.A., Romanenko V.V. Metody optimizatsii. Ch.1 (Optimization methods. Part 1), Tomsk, Izd-vo Tomskogo gosudarstvennogo universiteta sistem upravleniya i radioelektroniki, 2020, 350 p.
- Samarskii A.A. Vvedenie v chislennye metody (Introduction to numerical methods), Saint Petersburg, Izd-vo Lan', 2005, 288 p.
- Korn G.A., Korn T.M. Spravochnik po matematike (Handbook of Mathematics), Moscow, Nauka, 1973, 832 p.
- Karev O.D. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie. 2021, vol. 20, no. 3, pp. 57-64.
Download