Statistical data processing of on-board navigation systems of the umanned aerial vehicle helicopter type during landing


Аuthors

Ermakov P. G.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

e-mail: pavel-ermakov-1998@mail.ru

Abstract

Today, the problem of an accuracy landing of the unmanned aerial vehicle (UAV) helicopter type using a strapdown inertial navigation system (SINS) based on micro-electro-mechanical systems (MEMS) arises. It is proposed to use a laser altimeter as a SINS based on MEMS corrector to satisfy international civil aviation organization’s (ICAO) requirement for accuracy category III. This sensor uses infrared light to target an object and calculates the time it takes for the returned light. However, a laser altimeter contains abnormal altitude values, so this requires additional procedure to solve this problem. In paper describes the algorithm based on the UAV’s helicopter type climb rate to overcome this task. The description of the proposed optimal algorithm of determination of the UAV’s helicopter type altitude based on Kalman filter is given. It’s proposed to carry out the correction of the UAV’s navigation parameters not only when synchronizing navigation systems as in the implementation of the traditional loosely coupled integration scheme but also when the following condition is satisfied – the absolute value of the UAV helicopter type altitude difference according to a laser altimeter data must not exceed the threshold depending on the UAV’s rate of climb. To test the performance of the proposed algorithm the special software is constructed. The verification of the developed algorithm support of the vertical channel of the onboard integrated navigation system of the UAV helicopter type is completed. The value of probability of the UAV’s helicopter type altitude error in interval of 30 cm (ICAO category III) greater than 95% based on simulation modelling of the proposed algorithm support of the vertical channel of the onboard integrated navigation system based on field experiments of the UAV helicopter type during landing process.

Keywords:

MEMS-based strapdown inertial navigation system, laser altimeter, Kalman filter

References

  1.  Ermakov P.G., Evdokimenkov V.N., Gogolev A.A. Trudy MAI, 2023, no. 132. URL: https://trudymai.ru/eng/published.php?ID=176860. DOI: 10.34759/trd-2023-132-23
  2. Evdokimenkov V.N., Ermakov P.G., Gogolev A.A. Vestnik komp'yuternykh i informatsionnykh tekhnologii, 2023, no. 12, pp. 3-10. DOI: 10.14489/vkit.2023.12.pp.003-010
  3. Ermakov P.G. XLIX Mezhdunarodnaya molodezhnaya nauchnaya konferentsiya “Gagarinskie chteniya - 2023”: tezisy dokladov. Moscow, Izd-vo “Pero”, 2023, pp. 510–511.
  4. Ermakov P.G. 22-ya Mezhdunarodnaya konferentsiya “Aviatsiya i kosmonavtika”: tezisy dokladov. Moscow, Izd-vo “Pero”, 2023, pp. 238.
  5. Krasil'shchikov M.N., Sebryakov G.G. Sovremennye informatsionnye tekhnologii v zadachakh navigatsii i navedeniya bespilotnykh manevrennykh letatel'nykh apparatov (Modern information technologies in the tasks of navigation and guidance of unmanned maneuverable aerial vehicles), Moscow, Fizmatlit, 2009, 556 p.
  6. Ermakov P.G., Gogolev A.A. Trudy MAI, 2021, no. 117. URL: https://trudymai.ru/eng/published.php?ID=156253. DOI: 10.34759/trd-2021-117-11
  7. Gogolev A.A., Ermakov P.G. Algorithm for Integrating Data from the Autonomous Inertial Navigation Systems of Drones, Russian Engineering Research, 2022, vol. 42, pp. 936-938. DOI: 10.3103/S1068798X22090106
  8. Ovakimyan D.N., Zelenskii V.A., Kapalin M.V., Ereskin I.S. Trudy MAI, 2023, no. 132. URL: https://trudymai.ru/eng/published.php?ID=176849. DOI: 10.34759/trd-2023-132-16
  9. Gogolev A.A., Gorobinskii M.A. Trudy MAI, 2018, no. 101. URL: https://trudymai.ru/eng/published.php?ID=97029. DOI: 10.34759/trd-2018-101-28
  10. Vyalkov A.V., Vyalkova T.P. Giroskopiya i navigatsiya, 2023, vol. 31, no. 2 (121), pp. 26–50.
  11. Espinoza Valles A.S. Aerospace MAI Journal, 2023, vol. 30, no. 1, pp. 190–197. DOI: 10.34579/vst-2023-190-197
  12. Aksenov V.V. Inzhenernyi vestnik Dona, 2020, no. 11. URL: http://www.ivdon.ru/ru/magazine/archive/n11y2020/6675
  13. Dah-Jing Jwo, F.Chung, Tsu-Pin Weng. Adaptive Kalman Filter for Navigation Sensor Fusion, Sensor Fusion and Its Applications, Ciza Thomas, 2010, pp. 488. DOI: 10.5772/9957
  14. Hampel Frank R.A General Qualitative Definition of Robustness, The Annals of Mathematical Statistics, 1971, vol. 42, no. 6, pp. 1887–1896. URL: https://www.jstor.org/stable/2240114
  15. Blázques-García A., Conde A., Mori U., Lozano J.A. A Review on Outlier/Anomaly Detection in Time Series Data, ACM Computing Surveys, 2021, vol. 54, no. 3, pp. 1-33. DOI: 10.1145/3444690
  16. Gallegos-Funes F.J., Ponomaryov V.I. Real-time image filtering scheme based on robust estimators in presence of impulsive noise, Real-Time Imaging, 2004, vol. 10, no. 2, pp. 69–80. DOI: 10.1016/j.rti.2004.02.002
  17. Pearson R.K. Outliers in process modeling and identification, IEEE Transactions on Control Systems Technology, 2002, vol. 10, no. 1, pp. 55–63. DOI: 10.1109/87.974338
  18. Bhowmik S., Jelfs B., Arjunan S.P., Kumar D.K. Outlier Removal in Facial Electromyography through Hampel Filtering Technique, IEEE Life Sciences Conference (LSC), 2017, pp. 258–261. DOI: 10.1109/LSC.2017.8268192
  19. Saradjian M.R., Akhoondzadeh M. Thermal anomalies detection before strong earthquakes (M > 6.0) using interquartile, wavelet and Kalman filter methods, Natural Hazards and Earth System Sciences, 2011, vol. 11, no. 4, pp. 1099-1108. DOI: 10.5194/nhess-11-1099-2011
  20. Zarchi A.K., Sarajian M.R. Fault distance – based approach in thermal anomaly detection before strong Earthquakes, Natural Hazards and Earth System Sciences, 2020. DOI: 10.5194/nhess-2020-391
  21. Osborne Jason W., Overbay Amy. The power of outliers (and why researchers check for them), Practical Assessment, Research and Evaluation, 2004, vol. 9. DOI: 10.7275/qf69-7k43


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход