Nonlinear hydroelastic deformation waves in the walls of an annular channel made of material with fractional and quadratic physical nonlinearity surrounded by Winkler elastic medium

Аuthors
1*, 1**, 1***, 2****1. Yuri Gagarin State Technical University of Saratov, 77, Politechnicheskaya str., Saratov, 410054, Russia
2. Saratov State University named after N. G. Chernyshevsky, 83, Astrakhanskaya str., Saratov, 410012, Russia
*e-mail: elizaveta.popova.97@bk.ru
**e-mail: mogilevichli@gmail.com
***e-mail: eev2106@mail.ru
****e-mail: mari.popova.2004@internet.ru
Abstract
In this paper, a mathematical model in the form of a system of two evolutionary equations generalizing the Korteweg-de Vries-Schamel equation for the study of longitudinal deformation waves in the walls of an annular channel containing a viscous fluid was carried out. Initially, the axisymmetric hydroelasticity problem for two coaxial cylindrical shells of Kirchhoff-Love type, between which there is a fluid and surrounded by a Winkler elastic medium was formulated. The derivation of the equations of dynamics for the shell, the material of which has a nonlinear physical law linking stresses and strains, in the form of a linear combination of a quadratic function and a power function with fractional exponent was realized. The fluid is considered in the framework of Newtonian viscous fluid of constant density. The asymptotic analysis of the formulated problem by the method of multiscale expansions and linearization of the equations of dynamics for a thin annular layer of viscous fluid taking into account its inertia was done. As a result, the original problem was reduced to a system of two nonlinear evolution equations. A new difference scheme for the evolution equations system is proposed, and the evolution of nonlinear longitudinal deformation waves was numerically investigated within the framework of the constructed mathematical model. Computational experiments allowed us to establish that solitary deformation waves in the channel walls are supersonic solitons, as well as to estimate the influence of the fluid inertia and the surrounding elastic medium on the nonlinear wave process.
Keywords:
mathematical modeling, solitons, nonlinear deformation waves, cylindrical shell, viscous fluid, annular channel, combined fractional-quadratic nonlinearity, Winkler elastic mediumReferences
- Uglov A.L., Erofeev V.I., Smirnov A.N. Akusticheskii kontrol' oborudovaniya pri izgotovlenii i ehkspluatatsii (Acoustic control of equipment during manufacture and operation). Moscow: Nauka Publ., 2009. 280 p.
- Israilov M.Sh. Dinamicheskaya teoriya uprugosti i difraktsiya voln (Dynamic theory of elasticity and wave diffraction). Moscow: MGU Publ., 1992. 206 p.
- Zemlyanukhin A.I., Mogilevich L.I. Nelineinye volny v tsilindricheskikh obolochkakh: solitony, simmetrii, ehvolyutsiya (Nonlinear waves in cylindrical shells: solitons, symmetries, evolution). Saratov: Saratovskii gosudarstvennyi tekhnicheskii universitet Publ., 1999. 132 p.
- Erofeev V.I., Klyueva N.V. Solitons and nonlinear periodic deformation waves in rods, plates and shells (review). Akusticheskii zhurnal. 2002. V. 48, No. 6. P. 725-740. (In Russ.).
- Erofeev V.I., Morozov A.N., Nikitina E.A. Accounting for the effect of damage to the material on the propagation velocity of an elastic wave in it. Trudy MAI. 2010. No. 40. (In Russ.). URL: http://trudymai.ru/eng/published.php?ID=22861
- Lai T.T., Tarlakovskii D.V. Propagation of nonstationary axisymmetric perturbations from the surface of a ball filled with a pseudo-elastic Kosser medium. Trudy MAI. 2012. No. 53. (In Russ.). URL: http://trudymai.ru/eng/published.php?ID=29267
- Erofeev V.I., Mal'khanov A.O., Morozov A.N. Localization of the deformation wave in a nonlinear elastic conducting medium. Trudy MAI. 2010. No. 40. (In Russ.). URL: http://trudymai.ru/eng/published.php?ID=22860
- Erofeev V.I., Kazhaev V.V. Inelastic interaction and splitting of deformation solitons propagating in a rod. Vychislitel'naya mekhanika sploshnykh sred. 2017. V. 10, No. 2. P. 127-136. (In Russ.). DOI: 10.7242/1999-6691/2017.10.2.11
- Erofeev V.I., Kazhaev V.V., Pavlov I.S. Inelastic interaction and splitting of strain solitons propagating in a rod. Journal of Sound and Vibration. 2018. V. 419, P. 173–182. DOI: 10.1016/j.jsv.2017.12.040
- Erofeev V.I., Morozov A.N., Tsarev I.S. The evolution of quasi-harmonic bending waves in a beam lying on a generalized nonlinear elastic base and the possibility of their transformation into a sequence of wave packets. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.EH. Baumana. Seriya Estestvennye nauki. 2023. No. 2 (107). P. 83–97. (In Russ.). DOI: 10.18698/1812-3368-2023-2-83-97
- Dreiden G.V., Samsonov A.M., Semenova I.V., Shvartz A.G. Strain solitary waves in a thin-walled waveguide. Applied Physics Letters. 2014. V. 105, No. 21. art. no. 211906. DOI: 10.1063/1.4902899
- Shvartz A.G., Samsonov A.M., Semenova I.V., Dreiden G.V. Numerical simulation of bulk solitons in elongated shells. Proceedings of the International Conference Days on Diffraction 2015, DD 2015: Institute of Electrical and Electronics Engineers Inc., 2015, P. 303–309. DOI: 10.1109/DD.2015.7354881
- Lukash P.A. Osnovy nelineinoi stroitel'noi mekhaniki (Fundamentals of Nonlinear Structural Mechanics). Moscow: Stroiizdat Publ., 1978. 204 p.
- Zemlyanukhin A.I., Andrianov I.V., Bochkarev A.V., Mogilevich L.I. The generalized Schamel equation in nonlinear wave dynamics of cylindrical shells. Nonlinear Dynamics. 2019. V. 98 (1), P. 185–194. DOI: 10.1007/s11071-019-05181-5
- Bochkarev A.V., Zemlyanukhin A.I., Mogilevich L.I. Solitary waves in an inhomogeneous cylindrical shell interacting with an elastic medium. Akusticheskii zhurnal. 2017. V. 63, No. 2. P. 145–151. (In Russ.). DOI: 10.7868/S0320791917020022
- Zemlyanukhin A.I., Bochkarev A.V., Andrianov I.V., Erofeev V.I. The Schamel-Ostrovsky equation in nonlinear wave dynamics of cylindrical shells. Journal of Sound and Vibration. 2021. V. 491, art. no. 115752. DOI: 10.1016/j.jsv.2020.115752
- Gorshkov A.G., Morozov V.I., Ponomarev A.T., Shklyarchuk F.N. Aehrogidrouprugost' konstruktsii (Aerohydroelasticity of structures). Moscow: Fizmatlit Publ., 2000. 590 p.
- Païdoussis M.P. Fluid-structure interactions: slender structures and axial flow. V. 1. Amsterdam, Academic Press, 2014. DOI: 10.1016/C2011-0-08058-4
- Amabili M. Nonlinear Vibrations and Stability of Shells and Plates. New York: Cambridge University Press, 2008. DOI: 10.1017/9781316422892
- Basharina T.A., Glebov S.E., Akol'zin I.V. Investigation of the propagation of a hydraulic shock wave in a piston-type pressure stabilizer. Trudy MAI. 2023. No. 133. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=177661
- Koren'kov A.N. Linear dispersion and solitons on a cylindrical shell with a liquid. Zhurnal tekhnicheskoi fiziki. 2000. V. 70, No. 6. P. 122–125. (In Russ.).
- Koren'kov A.N. Solitary waves on a cylindrical shell with a liquid. Vestnik Sankt-Peterburgskogo universiteta. Matematika. Mekhanika. Astronomiya. 2019. V. 6, No. 1. P. 131–143. (In Russ.). DOI: 10.21638/11701/spbu01.2019.110
- Blinkov YU.A., Evdokimova E.V., Mogilevich L.I. Nonlinear waves in a cylindrical shell containing a viscous liquid under the influence of an elastic environment and structural damping in the longitudinal direction. Izvestiya vysshikh uchebnykh zavedenii. Prikladnaya nelineinaya dinamika. 2018. V. 26, No. 6. P. 32–47. (In Russ.). DOI: 10.18500/0869-6632-2018-26-6-32-47
- Blinkov YU.A., Evdokimova E.V., Mogilevich L.I., Rebrina A.YU. Modeling of wave processes in two shells with a liquid between them and surrounded by an elastic medium. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Seriya Estestvennye nauki. 2018. No. 6 (81). P. 4–17. (In Russ.). DOI: 10.18698/1812-3368-2018-6-4-17
- Mogilevich L.I., Popova E.V. Longitudinal waves in the walls of an annular channel filled with liquid and made of a material with fractional nonlinearity. Izvestiya VUZ. Applied Nonlinear Dynamics. 2023. V. 31, No. 3. P. 365–376. DOI: 10.18500/0869-6632-003040
- Blinkov YU.A., Mogilevich L.I., Popov V.S., Popova E.V. Evolution of solitary hydroelastic deformation waves in two coaxial cylindrical shells with physical non-linearity of Shamel. Vychislitel'naya mekhanika sploshnykh sred. 2023. V. 16 (4), P. 430–444. (In Russ.). DOI: 10.7242/1999-6691/2023.16.4.36
- Kauderer H. Nichtlineare Mechanik. Berlin, Springer, 1958.
- Fung Y.C. Biomechanics: Mechanical Properties of Living Tissues. New York, Springer-Verlag, 1993.
- Mogilevich L.I., Ivanov S.V. The study of wave propagation in a shell with soft nonlinearity and with a viscous liquid inside. Russian Journal of Nonlinear Dynamics. 2019. V. 15, No. 3. P. 233–250. DOI: 10.20537/nd190303
- Vol'mir A.S. Nelineinaya dinamika plastinok i obolochek (Nonlinear dynamics of plates and shells: studies). Moscow: Nauka Publ., 1972. 432 p.
- Il'gamov M.A. Vvedenie v nelineinuyu gidrouprugost' (Introduction to nonlinear hydroelasticity). Moscow: Nauka Publ., 1991. 200 p.
- Lamb H. Hydrodynamics, 6th Edition. New York, Dover Publications Inc., 1945.
- Nayfeh A.H. Perturbation methods. New York, Wiley, 1973.
- Gerdt V.P., Blinkov Yu.A., Mozzhilkin V.V. Gröbner bases and generation of difference schemes for partial differential equations. Symmetry, Integrability and Geometry: Methods and Applications. 2006. V. 2, art. no. 051. DOI: 10.3842/SIGMA.2006.051
- Blinkov Y.A., Gerdt V.P., Marinov K.B. Discretization of quasilinear evolution equations by computer algebra methods. Programming and Computer Software. 2017. V. 43, No. 2. P. 84–89. DOI: 10.1134/S0361768817020049
Download