Fundamental solutions to the transient dynamics of an anisotropic cylindrical Timoshenko shell
Аuthors
Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
e-mail: d.serduk55@gmail.com
Abstract
In the development of aviation equipment, special attention is devoted to the weight efficiency of the aircraft being designed. Among various factors, advancements in structural materials enable engineers to meet essential design requirements. A prevalent structural material in aviation technology is polymer composite. Developing technologies for creating and utilizing polymer composites, whether through layered or spatial reinforcement techniques, entails addressing numerous challenges, including mathematical ones. A distinct subset of these challenges involves analyzing wave processes in anisotropic thin-walled structures. For instance, in aircraft design, non-stationary impacts on certain fuselage sections are often evaluated. Cylindrical shells serve as fundamental structural components in the fuselages of modern passenger and cargo aircraft. This paper presents novel solutions to elasticity theory, specifically the transient deformation functions for anisotropic, thin, elastic, infinite circular cylindrical shells as described by Timoshenko theory. These foundational solutions are derived using exponential series and integral Laplace and Fourier transforms. The inverse Laplace transform is obtained through residues, while Fourier originals are determined by integrating rapidly oscillating functions. The solutions developed here are applicable to shells made from anisotropic, orthotropic, transversely isotropic, and isotropic materials. These foundational solutions enable the study of wave processes in anisotropic shells within a spatial framework, accounting for the effects of normal pressure with amplitude variation over coordinates and time. The superposition principle allows these fundamental solutions to be applied to scenarios involving multiple load sources, which is demonstrated through a sample calculation. In addition to providing solutions for direct non-stationary problems, these new fundamental solutions are also applicable for other related non-stationary problems, including the propagation of initial disturbances, contact problems, and inverse load identification problems. Moreover, with this solution for an unbounded domain, and by applying the boundary element method or the method of singular boundary conditions, a solution can also be constructed for the side surface of an arbitrary shell.
Keywords:
transient dynamics, anisotropic material, cylindrical shell, integral transformations, generalized functionsReferences
- Ivanov S.V., Mogilevich L.I., Popov V.S. Longitudinal waves in a nonlinear cylindrical shell containing a viscous liquid. Trudy MAI. 2019. No. 105. (In Russ.). URL: http://trudymai.ru/eng/published.php?ID=104003
- Nushtaev D.V., Zhavoronok S.I., Klyshnikov K.Yu., Ovcharenko E.A. Numerical and experimental study of deformation and stability of a cylindrical shell of a cellular structure under axial compression. Trudy MAI. 2015. No. 82. (In Russ.). URL: http://trudymai.ru/eng/published.php?ID=58589
- Karpov V.V., Semenov A.A., Kholod D.V. Strength study of flat orthotropic shells made of carbon fiber. Trudy MAI. 2014. No. 76. (In Russ.). URL: http://trudymai.ru/eng/published.php?ID=49970
- Firsanov V.V., Vo A.Kh. Investigation of longitudinally reinforced cylindrical shells under the action of a local load according to a refined theory. Trudy MAI. 2018. No. 102. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=98866
- Moiseev K.A., Panov Yu.N. A method for calculating vibrations of a reinforced anisotropic cylindrical shell under the action of a moving load. Trudy MAI. 2011. No. 48. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=27514
- Pertsev A.K., Platonov Eh.G. Dinamika obolochek i plastin (nestatsionarnye zadachi) ((Dynamics of shells and plates (non-stationary problems)). Leningrad: Sudostroenie Publ., 1987. 316 p.
- Filippov A.P., Kokhmanyuk S.S., Yanyutin E.G. Deformirovanie ehlementov konstruktsii pod deistviem udarnykh i impul'snykh nagruzok (Deformation of structural elements under the action of shock and impulse loads). Kyiv: Naukova dumka Publ., 1978. 184 p.
- Vil'de M.V., Kossovich L.YU., Shevtsova YU.V. Asymptotic integration of dynamic equations of elasticity theory for the case of a multilayer thin shell. Izvestiya Saratovskogo universiteta. Seriya: Matematika. Mekhanika. Informatika. 2012. V. 12, No. 2. P. 56-64. (In Russ.). DOI: 10.18500/1816-9791-2012-12-2-56-64
- Kossovich L.YU. Asymptotic methods in the dynamics of shells under shock effects. Izvestiya Saratovskogo universiteta. Seriya Matematika. Mekhanika. Informatika. 2008. V. 8, No. 2. P. 12–33. (In Russ.)
- Kossovich L.Yu. Asymptotic analysis of the unsteady stress-strain state of thin shells of rotation under normal type end impacts. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. 2011. No. 4-5. P. 2267-2268. (In Russ.)
- Koshkina T.B. Deformirovanie i prochnost' podkreplennykh kompozitnykh tsilindricheskikh obolochek pri dinamicheskikh szhimayushchikh nagruzkakh (Deformation and strength of reinforced composite cylindrical shells under dynamic compressive loads): Doctor's thesis. Riga: Institut mekhaniki polimerov, 1984. 182 p.
- Bagdasaryan R.A. Issledovanie volnovykh protsessov i napryazhenno-deformirovannogo sostoyaniya v anizotropnykh plastinakh i tsilindricheskikh obolochkakh (Investigation of wave processes and stress-strain state in anisotropic plates and cylindrical shells). Yerevan: Institut mekhaniki, 1985. 147 p.
- Taranov O.V. Nestatsionarnye volny v polupolose i tsilindricheskoi obolochke pri poverkhnostnykh i tortsevykh udarnykh vozdeistviyakh normal'nogo tipa (Nonstationary waves in a half-band and a cylindrical shell under surface and end impacts of a normal type): Doctor's thesis. Saratov: Saratovskii gosudarstvennyi universitet im. N. G. Chernyshevskogo, 2010. 125 p.
- Li X., Chen Y. Transient dynamic response analysis of orthotropic circular cylindrical shell under external hydrostatic pressure. Journal of Sound and Vibration. 2002. V. 257, No. 5. P. 967–976. DOI: 10.1006/jsvi.2002.5259
- Maleki S., Tahani M., Andakhshideh A. Static and transient analysis of laminated cylindrical shell panels with various boundary conditions and general lay-ups. ZAMM: Zeitschrift für angewandte Mathematik und Mechanik. 2012. V. 92, No. 2. P. 124–140. DOI: 10.1002/zamm.201000236
- Malekzadeh K., Khalili S.M.R., Davar A., Mahajan P. Transient Dynamic Response of Clamped-Free Hybrid Composite Circular Cylindrical Shells. Applied Composite Materials. 2010. V. 17, P. 243–257. DOI: 10.1007/s10443-009-9112-8
- Prado Z.J., Argenta A.L., Silva F.M., Gonçalves P.B. The effect of material and geometry on the non-linear vibrations of orthotropic circular cylindrical shells. International Journal of Non-linear Mechanics. 2014. V. 66, P. 75–86. DOI: 10.1016/j.ijnonlinmec.2014.03.017
- Beheshti A., Ansari R. Linear dynamic transient analysis of unsymmetric laminated composite shells. Mechanics of Advanced Materials and Structures. 2023. V. 31, No. 8. P. 1655–1665. DOI: 10.1080/15376494.2022.2141380
- Han X., Xu D.L. Elastic waves propagating in a laminated cylinder subjected to a point load. Computational Mechanics – New Frontiers for the New Millennium. 2001. No. 1. P. 41–46. DOI: 10.1016/B978-0-08-043981-5.50011-0
- Rizzetto F., Jansen E.L., Strozzi M., Pellicano F. Nonlinear dynamic stability of cylindrical shells under pulsating axial loading via Finite Element analysis using numerical time integration. Thin-Walled Structures. 2019. V. 143. DOI: 10.1016/j.tws.2019.106213
- Li J., Shi Z., Liu L. A scaled boundary finite element method for static and dynamic analyses of cylindrical shells. Engineering Analysis with Boundary Elements. 2019. V. 98, P. 217–231. DOI: 10.1016/j.enganabound.2018.10.024
- Tiwari S., Hirwani C.K., Barman A.G. Deflection Behaviour of Hybrid Composite Shell Panels Under Dynamic Loadings. Mechanics of Composite Materials. 2024. V. 60, P. 1–16. DOI: 10.1007/s11029-024-10171-9
- Gorshkov A.G., Medvedskii A.L., Rabinskii L.N., Tarlakovskii D.V. Volny v sploshnykh sredakh (Waves in Continuous Media Study guide: for universities), Moscow: Fizmatlit Publ., 2004. 472 p.
- Dech G. Rukovodstvo k prakticheskomu primeneniyu preobrazovaniya Laplasa i Z-preobrazovanii (Guide to the Practical application of Laplace and Z-transforms). Moscow: Nauka Publ., 1971. 288 p.
- Vinberg Eh.B. Algebra mnogochlenov (Algebra of polynomials). Moscow: Prosveshchenie Publ., 1980. 176 p.
- Bakhvalov N.S., Zhidkov N.P., Kobel'kov G.M. Chislennye metody (Numerical methods). Moscow: Nauka Publ., 1975. 630 p.
- Sorokin V.G., Volosnikova A.V., Vyatkin S.A. et al. Marochnik stalei i splavov (Vintage of steels and alloys). Moscow: Mashinostroenie Publ., 1989. 640 p.
- Vishnuvardhan J., Krishnamurthy C.V., Balasubramaniam K. Determination of material symmetries from ultrasonic velocity measurements: A genetic algorithm based blind inversion method. Composites Science and Technology. 2008. V. 68, Iss. 3–4. P. 862–871. DOI: 10.1063/1.2718042
- Nurimbetov A.U. Sterzhnevye i poluprostranstvennye modeli deformirovaniya sloistykh zakruchennykh izdelii v pole statsionarnykh i nestatsionarnykh nagruzok (Core and semi-spatial models of deformation of layered twisted products in the field of stationary and non-stationary loads): Doctor's thesis. Moscow: MAI, 2016. 343 p.
Download