Investigation of heat transfer processes in cooling systems of liquid-propellant rocket engines with additive porous structures

Аuthors
*, **, ***, ****, *****LLC SPE "InterPolaris", Pervomayskaya str., 2, Novovoronezh, Voronezh Region, Russia, 396073
*e-mail: ta@interpolyaris.ru
**e-mail: levinaav@interpolyaris.ru
***e-mail: akolziniv@interpolyaris.ru
****e-mail: vinokurovdmnik@gmail.com
*****e-mail: shmatov@inlerpolyaris.ru
Abstract
To improve the stability and reliability of rocket engines, new technologies are being introduced to intensify heat exchange processes. The combination of the investigated technologies is an innovative cooling system for a liquid-propellant rocket engine in the form of a highly efficient porous structures made by an additive method within cooling path. To study the heat transfer processes during the movement of a single-phase coolant in a cooling path with a porous structure, a computational experiment and thermal-hydraulic tests were carried out. The mathematical model, based on the complete geometric identification of the innerporous space, determines with a high degree of accuracy the thermal-hydraulic characteristics of the coolant, on the basis of which the criterial equations of Nusselt numbers for porous structures with different porosity coefficients are determined. The influence of thermal-hydraulic and geometrical properties of an additive porous medium on the value of the Nusselt number is established. Preliminary computational experiments were carried out, confirming a high degree of reliability of finding the coefficients in the criteria equations for Nusselt numbers and indicating the correctness of the mathematical model of the study. To confirm the effectiveness of the use of porous structures in the cooling path, fire tests of a prototype liquid-propellant low-thrust rocket engine manufactured by an additive method were carried out. It is shown that the use of an additive porous structure in the cooling system of a low-thrust liquid-propellant rocket engine allows for the efficient implementation of the heat removal process from the inner surface of the combustion chamber.
Keywords:
liquid-propellant rocket engine, porous structure, cooling path, thermal-hydraulic studies, mathematical modeling, additive manufacturing, computational experiment, firing tests of liquid-propellant rocket enginesReferences
- 1.Kislykh V.V., Kudimov N.F., Panasenko A.V., Tret'yakova O.N. About modeling problems of gasdynamic flow Piston Gasdynamic Unit for development of products of space-rocket mechanics. Trudy MAI. 2011. No. 47. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=26754
- Pelevin F.V., Avraamov N.I., Orlin S.A., Sintsov A.L. Heat exchange efficiency in porous structural elements of liquid-propellant rocket engines. Inzhenernyi zhurnal: nauka i innovatsii. 2013. No. 4. P. 1-14. (In Russ.)
- Solov'eva O.V., Yafizov R.R., Solov'ev S.A. The porous structure effective thickness determination in the case of convective heat exchange. Vestnik Kazanskogo gosudarstvennogo energeticheskogo universiteta. 2020. V. 12, No. 3. P. 113–122. (In Russ.)
- Shmatov D.P., Drozdov I.G., Vasil'chenko ets. Kamera zhidkostnogo raketnogo dvigatelya. Patent № 2720596 RF (Liquid-propellant engine chamber. Patent № 2720596 RU). 2020. Byull. No 14. 8 p.
- Pelevin F.V., Ponomarev A.V., Semenov P.Yu. Recuperative heat-exchange apparatus with porous metal for a liquid-propellant rocket engine. Izvestiya vuzov. Mashinostroenie. 2015. No. 6. P. 74-81. (In Russ.)
- Pelevin F.V., Avraamov N.I., Semenov P.Yu. A new approach to cooling rocket oxygen-kerosene engine. 2012. No. 6. DOI: 10.7463/0612.0431608
- Artemov A.L., Dyadchenko V.Yu., Luk'yashko A.V. ets. Development of design and technological solutions for the manufacture of prototypes of the inner shell of the combustion chamber of a multifunctional liquid rocket engine using additive technologies Kosmicheskaya tekhnika i tekhnologii. 2017. No. 1. P. 50-62. (In Russ.)
- Pelevin F.V., Avraamov N.I., Sintsov A.L., Semenov P.Yu., Ponomarev A.V. Convective cooling of heat engines using porous materials and the principle of interchannel coolant transpiration. 16 shkola-seminar «Problemy gazodinamiki i teploobmena v energeticheskikh ustanovkakh», Saint Petersburg, May 2007. Moscow: Izdatel'skii dom MEI Publ., 2007. V.1, 479 p.
- Polyaev V.M., Maiorov V.A., Vasil'ev L.L. Gidrodinamika i teploobmen v poristykh elementakh konstruktsii letatel'nykh apparatov (Hydrodynamics and heat transfer in porous structural elements of aircraft). Moscow: Mashinostroenie Publ., 1988. 168 p.
- Belov S.V. Poristye metally v mashinostroenii (Porous metals in mechanical engineering). M.oscow: Mashinostroenie Publ., 1981. 247 p.
- Rotermel' A.R., Yashkov S.A., Shevchenko V.I. Experimental study of aerodynamic characteristics in a supersonic wind tunnel ST-3 using a software and hardware complex. Trudy MAI. 2021. No. 119. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=159783. DOI: 10.34759/trd-2021-119-06
- Kovalev P.I., Mende N.P. Al'bom sverkhzvukovykh techenii (Album of supersonic flows). Saint Petersburg: Izd-vo Politekhnicheskogo universiteta Publ., 2011. 251 p.
- Nekrasov B.B. Gidravlika i ee primeneniya na letatel'nykh apparatakh (Hydraulics and its applications on aircraft). Moscow: Mashinostroenie Publ., 1967. 265 p.
- Frik P.G. Turbulentnost': modeli i podkhody (Turbulence: models and approaches). Perm': PGTU Publ., 1998. 108 p.
- Shlikhting G. Teoriya pogranichnogo sloya (Boundary Layer Theory). Moscow: Nauka Publ., 1974. 712 p.
- Ignatkin YU.M., Konstantinov S.G. Researches of aerodynamic characteristics of a main rotor helicopter using CFD method. Trudy MAI. 2012. No. 57. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=30875
- Loitsyanskii L.G. Mekhanika zhidkosti i gaza (Mechanics of liquid and gas). Moscow: Drofa Publ., 2003. 846 p.
- Anikeev A.A., Molchanov A.M., Yanyshev D.S. Osnovy vychislitel'nogo teploobmena i gidrodinamika (Fundamentals of computational heat transfer and fluid dynamics). Moscow: Izd-vo MAI Publ., 2010. 149 p.
- Abramovich G.N. Teoriya turbulentnykh strui (Theory of turbulent jets). Moscow: Fizmatgiz Publ., 1960. 715 p.
- Baklanov A.V., Vasil'ev A.A. Adaptive technologies application in the issue of studying the flow structure formed by the burners in the GTE combustion chamber. Trudy MAI. 2018. No. 102. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=98895
Download