Development of a control system for a small-sized gas turbine engine


Аuthors

Samotya A. A.*, Eliseeva A. Y.

JSC "ODK-STAR", Perm, Russian Federation

*e-mail: samotyasasha@mail.ru

Abstract

The article is devoted to the development of a fuel supply control system for a small-sized gas turbine engine (MGTD). Of particular difficulty when feeding fuel to the combustion chamber are the processes of starting and switching the engine to various operating modes, such as starting and power control, taking into account the effects of external factors. The article presents a mathematical description of the electric motor of a fuel pump, two methods of controlling an autonomous voltage inverter are considered: vector-spatial pulse width modulation (VSM) and 6-step switching of transistors. To solve the problem of dosing a small amount of fuel, the VSM was chosen, which ensures the operation of the electric motor at low speeds without the use of speed and position sensors. The study considers sensor-free methods for estimating the speed and angle of rotation of the rotor of an electric fuel pump drive using a rotating coordinate system along the d, q axes and a 6-stage switching with speed determination by measuring the frequency of counter-EMF in the free phase of the electric drive. engine. A sensorless vector control system for a permanent magnet synchronous motor using spatial vector pulse width modulation is described. When implementing the speed observer, it is proposed to use internal control system signals that depend on the orientation error to launch the MGTD at low speeds without using speed and rotor position sensors. The results of the work of the developed fuel supply control system for a small-sized gas turbine engine, reflecting high efficiency and adaptability, are presented. Experiments have been conducted confirming that the proposed system is capable of significantly improving the efficiency of MGTD due to the absence of fuel bypass and optimization of the operation of the electric motor of the fuel pump.

Keywords:

small-size gas turbine engine, automatic control system, MGTD control circuits, software, permanent magnet synchronous motor, electric drive, vector control system, sensor-free control

References

  1. Kornilov V.A., Molodyakov D.S., Sinyavskaya Yu.A. Multicopter flight control system. Trudy MAI. 2012. No. 62. (In Russ.). URL: http://trudymai.ru/eng/published.php?ID=35543
  2. Vinogradov S.S. Synthesis of a fuzzy-logic based navigation controller for “Raptor” small-size helicopter. Trudy MAI. 2012. No. 73. (In Russ.). URL: http://trudymai.ru/eng/published.php?ID=48562
  3. Gurevich O.S., Gulienko A.I. Gas turbine engine systems for an "electric" aircraft. Klimovskie chteniya – 2017. Perspektivnye napravleniya razvitiya aviadvigatelestroeniya (Saint-Petersburg, October 2017): sbornik statei. Saint-Petersburg: Skifiya-print Publ., 2017. P. 214–223.
  4. Gurevich O.S. Sistemy avtomaticheskogo upravleniya aviatsionnymi GTD: Entsiklopedicheskii spravochnik (Automatic control systems for aviation gas turbine engines: An encyclopedic reference book). Moscow: Torus Press Publ., 2011. 208 p.
  5. Anuchin A.S. Sistemy upravleniya elektroprivodov (Control systems of electric drives). Moscow: Izdatel'skii dom MEI Publ., 2015. 320 p.
  6. Basharin A.V., Novikov V.A., Sokolovskii G.G. Upravlenie elektroprivodami (Control of electric drives). Leningrad: Energoizdat Publ., 1982. 392 p.
  7. Frolov V.Ya., Zhiligotov R.I. Development of a sensor-free vector control system for a synchronous motor with permanent magnets in Matlab Simulink. Zapiski gornogo instituta. 2018. V. 229, P. 92-98. (In Russ.). DOI: 10.25515/PMI.2018.1.92
  8. Frolov V.Ya., Zhiligotov R.I. The use of sliding modes in observers of the state of synchronous motors with permanent magnets. Mekhatronika, avtomatika i robototekhnika. 2018. No. 2. P. 80-81. (In Russ.)
  9. Braslavskii I.Ya., Zyuzev A.M., Nesterov K.E. Asynchronous thyristor electric drive with a sensorless speed meter. Elektromashinostroenie i elektrooborudovanie. 2006. No. 66. P. 35-36. (In Russ.)
  10. Petrochenkov A.B., Frank T., Romodin A.V., Kychkin A.V. Semi-natural modeling of an active adaptive electric grid. Elektrotekhnika. 2013. No. 11. P. 60-63. (In Russ.)
  11. German-Galkin S.D. Komp'yuternoe modelirovanie poluprovodnikovykh sistem v MATLAB 6.0. (Computer modeling of semiconductor systems in MATLAB 6.0). Saint-Petersburg: Izd-vo «Korona» Publ., 2001. 320 p.
  12. Zhiligotov R.I., Frolov V.Ya. Vector control of a synchronous motor with permanent magnets based on a texas instruments microcontroller since 2000. Mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya «Innovatsii i perspektivy razvitiya gornogo mashinostroeniya i elektromekhaniki - IPDME-2017» (Saint-Petersburg, March 2017): sbornik trudov. Saint-Petersburg: Sankt-Peterburgskii gornyi universitet Publ., 2017. P. 144-147.
  13. Dadeknov D.A., Solodkii E.M., Shachkov A.M. Sensor-free vector control of a valve motor with correction of the error in calculating the electric angle. Fundamental'nye issledovaniya. 2016. No. 11 (3). P. 505-509. (In Russ.)
  14. Cristian Busca. Open loop low speed control for PMSM in high dynamic application. Aalborg, Denmark: Aalborg universitet, 2010.
  15. Korel'skii D.V., Potapenko E.M., Vasil'eva E.V. Review of modern control methods for synchronous motors with permanent magnets. Радiоелектронiка. Iнформатика. Управлiння. 2001. P. 155–159. (In Ukraine)
  16. Osin I.L. Sinkhronnye elektricheskie dvigateli maloi moshchnosti (Synchronous electric motors of low power). Moscow: Izdatel'skii dom MEI Publ., 2006. 216 p.
  17. Bobtsov A.A. Output control algorithm with compensation of harmonic disturbance with offset. Avtomatika i telemekhanika. 2008. No. 8. P. 25-32. (In Russ.)
  18. Gol'berg F.D., Gurevich O.S., Petukhov A.A. Amathematical model of the engine in acs gte for increasing of safety and quality control. Trudy MAI. 2012. No. 58. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=33278
  19. Kuz'michev V.S., Krupenich I.N., Rybakov V.N., ets. Generation of the gas turbine engine working process virtual model Subject area of the case. Trudy MAI. 2013. No. 67. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=41518
  20. Zhumataeva Zh.E. Research on robust stability of control systems aircraft. Trudy MAI. 2012. No. 53. (In Russ.). URL: http://trudymai.ru/eng/published.php?ID=29614


Download

mai.ru — informational site MAI

Copyright © 2000-2025 by MAI

Вход