Multicriterial minimax method for designing fpv-type unmanned aerial vehicle based on morphological analysis and latent variable theory


Аuthors

Ananjev A. V.1*, Kuziyarov N. F.2, Moiseev S. I.3

1. Plekhanov Russian University of Economics, Voronezh, Russian Federation
2. MESC Air Force “Air Force Academy named after professor N.E. Zhukovskii and Yu.A. Gagarin” (branch in the city of Chelybinsk), 40, Gorodok-11, Chelybinsk, 454015, Russia
3. Voronezh State Technical University, VSTU, 14, Moskovsky prospect, Voronezh, 394026, Russia

*e-mail: Ananyev-Alexandr@yandex.ru

Abstract

The paper presents a multi-criteria minimax methodology for designing an unmanned aerial vehicle (UAV), based on morphological analysis and the theory of latent variables. An analysis of existing approaches to UAV design was conducted. Based on the analysis, it was proposed to identify the basic part of the technical device functional elements, the main characteristics of which should ensure key requirements, for example, for the mass of the payload. Morphological analysis is formalized by an algorithm that includes multi-criteria selection procedures based on the theory of latent variables. The algorithm for solving the problem of selecting a rational configuration for the UAV has been considered, through which a compromise solution has been obtained regarding the dilemma of «algorithm complexity» versus «solution quality» based on the use of a controlled parameter. A rational component selection algorithm for the basic configuration of the product is presented, to which non-basic components will be added later. The scheme of this algorithm and the evaluation of its properties have been implemented. A graph showing the dependence of the number of comparisons on the parameters of the type is presented, illustrating the complexity of the calculations. The allocation of basic part formation stage structure to achieve the minimum necessary requirements for the main indicator with subsequent maximization by a set of all functional units parameters involves the implementation of the “multi-criteria minimax” procedure. The multi-criteria minimax implementation allows for reasonable limitation of requirements and ensuring the minimum achievable UAV form factor. 

Keywords:

morphological analysis, latent variables, algorithm, design, mathematical modeling, configuration

References

  1. Ronzhin A.L., Nguen V.V., Solenaya O.YA. Analysis of the problems of unmanned flying manipulators development and UAV physical interaction with ground objects. Trudy MAI. 2018. No. 98. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=90439
  2. Karimov A.KH. Design features of new generation unmanned aerial vehicles (UAVs). Trudy MAI. 2011. No. 47. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=26769&eng=N
  3. Gogolev A.A. Semi-natural modelling of unmanned aerial vehicles like multicopter. Trudy MAI. 2017. No. 92. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=77238
  4. Trokhov D.A., Turkin I.K. On unmanned aircraft for reconnaissance missions performance upon the sea design procedure. Trudy MAI. 2014. No. 78. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=53735
  5. Guseinova R.O., Gumbatov D.A. Optimization of the conceptual development of unmanned aerial vehicles. Trudy MAI. 2024. No. 136. (In Russ.). URL: https://trudymai.ru/ eng/published.php?ID=180684
  6. Guseinov O.A., Fatullaev A.A. Issues of designing power supply units for multicopters. Trudy MAI. 2024. No. 138. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=182666
  7. Bryanskii S.A., Vizil'ter Yu.V. Morphology measures of complexity and informationfor binary images. Matematicheskie metody raspoznavaniya obrazov. 2017. V. 18, No. 1. P. 110-111. (In Russ.)
  8. Rubis A.Yu., Lebedev M.A., Vizil'ter Yu.V., Vygolov O.V., Zheltov S.Yu. Comparative image filtering using monotonic morphological operators. Komp'yuternaya optika. 2018. V. 42, No. 2. P. 306-311. (In Russ.). DOI: 10.18287/2412- 6179-2018-42-2-306-311
  9. Rubis A.YU., Lebedev M.A., Vizil'ter Yu.V., Vygolov O.V. Morphological image filtering based on guided contrasting. Komp'yuternaya optika. 2016. V. 40, No. 1. P. 73-79. (In Russ.). DOI: 10.18287/2412-6179-2016-40-1-73-79
  10. Vizil'ter Yu.V., Gorbatsevich V.S., Vishnyakov B.V., Sidyakin S.V. Object detection in images using morphlet descriptions. Komp'yuternaya optika. 2017. V. 41, No. 3. P. 406-411. (In Russ.). DOI: 10.18287/2412-6179-2017-41-3-406-411
  11. Vizil'ter Ju.V., Sidjakin S.V. Morphological spectra, Mehanika, upravlenie i informatika. 2012. No. 3 (9). P. 234-241. (In Russ.)
  12. Vizil'ter Yu.V., Gorbatsevich V.S., Zheltov S.Yu., Rubis A.Yu., Vorotnikov A.V. Morphlets: a new class of tree-structured morphological descriptors of image shape. Komp'yuternaya optika. 2015. V. 39, No. 1. P. 101-108. (In Russ.). DOI: 10.18287/0134-2452-2015-39-1-101-108
  13. Vizil'ter Yu.V., Gorbatsevich V.S., Rubis A.Yu., Vygolov O.V. Image shape matching using diffusion morphology and diffusion correlation. Komp'yuternaya optika. 2015. V. 39. No. 2. P. 265-274. (In Russ.). DOI: 10.18287/0134-2452-2015-39-2-265-274
  14. Sidyakin S.V., Vizil'ter Yu.V. Morphological shape descriptors of binary images based on elliptical structuring elements. Komp'yuternaya optika. 2014. V. 38. No. 3. P. 511-520. (In Russ.). DOI: 10.18287/0134-2452-2014-38-3-511-520
  15. Vizil'ter Yu.V., Sidyakin S.V. Bicyclical wireframes of two-dimensional figures. Mekhanika, upravlenie i informatika. 2012. No. 3 (9). P. 258-264. (In Russ.)
  16. Vizil'ter Yu.V., Vygolov O.V., Rubis A.Yu. Morphological shape correlation for multispectral image fusion. Vestnik komp'yuternykh i informatsionnykh tekhnologii. 2012. No. 3 (93). P. 14-20. (In Russ.)
  17. Vizil'ter Ju.V., Sidjakin S.V. Parametric and morphological spectra, Komp'juternaja optika, 2015. V. 39, No. 1. P. 109-118. (In Russ.)
  18. Rubis A.Yu., Vygolov O.V., Vizil'ter Yu.V. Multispectral morphological image fusion. Mekhanika, upravlenie i informatika. 2012. No. 2 (8). P. 143-148. (In Russ.)
  19. Vizil'ter Yu.V., Zheltov S.Yu. The use of projective morphologies for object detection and identification in images. Izvestiya RAN. Teoriya i sistemy upravleniya. 2009. No. 2. P. 125-138. (In Russ.)
  20. Vizil'ter Yu.V. Generalized projective morphology. Komp'yuternaya optika. 2008. V. 32, No. 4. P. 384-399. (In Russ.)
  21. Vizil'ter Yu.V. Construction of segmentation and data compression operators based on projective morphological decompositions. Izvestiya RAN. Teoriya i sistemy upravleniya. 2009. No. 3. P. 89-104. (In Russ.)
  22. Vizil'ter Yu.V., Zheltov S.Yu. Projective morphoogies and their application in structural analysis of digital images. Izvestiya RAN. Teoriya i sistemy upravleniya. 2008. No. 6. P. 113-128. (In Russ.)
  23. Zaitseva N.I., Pogarskaya T.A. Development of software complex for analysis and optimization of the aircraft assembly process. Trudy MAI. 2022. No. 124. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=167106. DOI: 10.34759/trd-2022-124-23
  24. Bodryshev A.V., Kuprikov M.Yu. Choice of the layout decision in the absence of an obvious prototype with factor application konkordacii. Trudy MAI. 2011. No. 47. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=26805
  25. Guseinov A.B. Methods of structural and parametric synthesis of structural and layout image UAV. Trudy MAI. 2011. № 49. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=28180
  26. Il'in V.N., Lepekhin A.V. Technology of automation of structurally-parametrical synthesis on the basis of a method of a morphological box. Trudy MAI. 2011. № 46. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=26008
  27. Azarnova T.V., Barkalov S.A., Bondarenko Yu.V. et al. Matematicheskie metody prinyatiya reshenii. Klassicheskie podkhody i ikh razvitie: monografiya (Mathematical Methods for Decision Making. Classical Approaches and Their Development: Monograph), Rostov-na-Donu: DGTU Publ., 2024. 205 p.
  28. G2. Analitika. URL: https://www.g2.com/products/analytica/features
  29. Barkalov S.A., Moiseev S.I., Poryadina V.L. Modeli i metody v upravlenii i ekonomike s primeneniem informatsionnykh tekhnologii (Models and Methods in Management and Economics Using Information Technologies), Saint Petersburg: Intermediya Publ., 2017. 264 p.
  30. Kuzmenko R.V., Moiseev S.I., Stepanov L.V., Sysoeva T.P., Lukin A.N. Modeling the Solution of some Management Problems Using Latent Variables. Journal of Physics: Conference Series. 2021. V. 1902, P. 012076. DOI: 10.1088/1742-6596/1902/1/012076
  31. Maslak A.A., Moiseev S.I., Osipov S.A. Comparative analysis of Rasch model parameter estimates obtained by maximum likelihood and least squares methods. Problemy upravleniya. 2015. No. 5. P. 58-66. (In Russ.)
  32. Rasch G. Probabilistic Models for Some Intelligence and Attainment Tests. Copenhagen, Denmark: Danish Institute for Educational Research, 1960. 160 p. DOI: 10.2307/2287805
  33. Maslak A.A., Moiseev S.I. Model' Rasha otsenki latentnykh peremennykh i ee svoistva: monografiya (The Rasch Model for Estimating Latent Variables and Its Properties: Monograph), Voronezh: NPTS «Nauchnaya kniga» Publ., 2016. 177 p.
  34. Anan'ev A.V., Ivannikov K.S., Moiseev S.I. Decision-making methodology under uncertainty using the theory of latent variables. Sistemy upravleniya i informatsionnye tekhnologii. 2022. No. 2 (88). P. 31-36. (In Russ.). DOI: 10.36622/VSTU.2022.88.2.006
  35. Anan'ev A.V., Ivannikov K.S., Moiseev S.I. Application of Latent Variable Theory for Analyzing the Elemental Basis of Signal Processing Devices Using the Pairwise Comparison Method. Sistemy upravleniya i informatsionnye tekhnologii. 2022. No. 3 (89). P. 35-38. (In Russ.)
  36. Barkalov S.A., Anan'ev A.V., Ivannikov K.S., Moiseev S.I. Algorithm and Methods for Management Decision-Making Based on Latent Variable Theory Under Time Constraints. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Komp'yuternye tekhnologii, upravlenie, radioelektronika. 2022. V. 22, No. 3. P. 106-116. (In Russ.). DOI: 10.14529/ctcr220310


Download

mai.ru — informational site MAI

Copyright © 2000-2025 by MAI

Вход