The Tolmen length in the model that takes into account the wedging energy of the surface layer of the droplet


Аuthors

Shcherbakov M. E.*, Kalaydin E. N.**, Shcherbakov E. A.

Kuban State University, Krasnodar, Russia

*e-mail: latiner@mail.ru
**e-mail: kalaidin@econ.kubsu.ru

Abstract

In B. V. Deryagin's model, which takes into account the interphase transition from liquid to gas, a molecular / wedging layer of thickness h_m is formed in the surface layer of the droplet, compensating for gas adsorption into the surface layer of the liquid. For this model, the droplet equilibrium condition is defined, which includes both the average and Gaussian curvature of the Gibbs surface; droplets, for determining which it is necessary to take into account the energy of formation of the wedging layer and its elastic energy, will be called small droplets.; For the first time, the relationship between the Tolmen length and the thickness of the wedging layer, characterizing the degree of gas adsorption into a liquid, is determined; the Tolmen length for droplets with a small radius of curvature is specified. Within the framework of the integral approach, the dependence of the cosine of the wetting angle of a small droplet on the radius of the sticking spot is obtained from the equality to zero of the first variation of the functional of the total energy of the droplet in a model that takes into account the wedging energy.; A comparison of calculations of the wetting angle of a small droplet for various models that take into account the surface layer confirms the conclusion that the wetting angle decreases non-linearly as the droplet size decreases. The relationship between the spreading of a small droplet and the size of the droplet is obtained. The smaller the drop, the greater the degree of spreading. For droplets in zero gravity and droplets smaller than 10 nm, the pressure difference does not depend on the position of the point inside the droplet and is equal to the Lagrange multiplier of the variational problem for the functional of the total energy of the droplet, which includes terms corresponding to the wedging energy of the surface layer and its elastic energy.

Keywords:

functional of the total energy of the droplet, wedging energy, Deryagin model, Willmore functional, droplet equilibrium condition, droplet wetting angle, nanodrip, ranking of the total energy of the droplet, Tolman length, dependence of the coefficient of surface tension on the droplet size, small droplet, spreading droplet, Lagrange multiplier, Gibbs surface, surface layer, elastic energy, droplet in zero gravity, the Young–Laplace formula

References

  1. Bykov T.V., Shchѐkin A.K. Surface tension, Tolman length, and effective stiffness constant of the surface layer of a drop with a large radius of curvature. Neorganicheskie materialy. 1999. Vol. 35, No. 6. P. 759–763. (In Russ.)
  2. Van-der-Vaal's I.D., Konstamm F. Kurs termostatiki. (Course in thermostatics). Moscow: ONTI Publ., 1936. Vol. 1. – 453 p.
  3. Vin Ko. Ko., Temnov A.N. Angular oscillations of solid bodies with a two-layer liquid near the main resonance. Trudy MAI. 2021. No. 119. (In Russ.). URL: https://trudymai.ru/eng/pub lished.php?ID=159776. DOI: 10.34759/trd-2021-119-03
  4. Deryagin B.V., Churaev N.V., Muller V.M. Poverkhnostnye sily (Surface forces). Moscow: Nauka Publ., 1985. 398 p.
  5. Deryagin B.V., Obukhov E.V. Anomalous properties of thin layers of liquids. Kolloidnyi zhurnal. 1935. Vol. 1, No. 5. P. 385–398. (In Russ.)
  6. Igolkin S.I. Critical Analysis of Experiments on Measuring Wetting Angles and Surface Tension Forces. Prikladnaya fizika. 2007. No. 4. P. 43–52. (In Russ.)
  7. Korovkin V.P., Sekrieru G.V., Sazhin F.M. Analysis of the Relationship between Capillary and Wedging Pressure. Matematicheskie issledovaniya. 1989. Vol. 108, P. 27–32. (In Russ.)
  8. Kuzamishev A.G., Shebzukhova M.A., Bzhikhatlov K.Ch., Shebzukhov A.A. Size Dependences of Thermophysical Properties of Nanoparticles. Surface Tension. Teplofizika vysokikh temperatur. 2022. Vol. 60, No. 3. P. 343–349. (In Russ.)
  9. Markov I.I., Baturin M.V., Ivanov M.N., Napol'skaya G.Yu. Determination of Optimal Droplet Parameters by the Variational Method. Vestnik Severo-Kavkazskogo gosudarstvennogo tekhnicheskogo universiteta. 2009. No. 2 (19). P. 51–58. (In Russ.)
  10. Makhrov V.P., Glushchenko A.A., Yur'ev A.I. Influence of hydrodynamic characteristics on behavior of free surface liquid in high speed flow. Trudy MAI. 2013. No. 64. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=36423
  11. Matyukhin S.I., Frolenkov K.Yu. Shape of Liquid Droplets Placed on a Solid Horizontal Surface. Kondensirovannye sredy i mezhfaznye granitsy. 2013. Vol. 15, No. 3. P. 292–304. (In Russ.)
  12. Myshkis A.D., Babskii V.G., Zhukov M.Yu., Kopachevskii N.D. et al. Metody resheniya zadach gidromekhaniki dlya uslovii nevesomosti (Methods for Solving Fluid Mechanics Problems under Zero Gravity Conditions). Kiev: Naukova dumka Publ., 1992. 590 p.
  13. Myshkis A.D., Babskii V.G., Kopachevskii N.D., Slobozhanin L. et al. Gidromekhanika nevesomosti (Hydromechanics of weightlessness). Moscow: Nauka Publ., 1976. 504 p.
  14. Polovinkin M.S., Volkov N.A., Tat'yanenko D.V. Calculation of the contact angle of a sessile drop on lyophilic and lyophobic flat surfaces by the molecular dynamics method. Materialy 66-i Vserossiiskoi nauchnoi konferentsii MFTI «Elektronika, fotonika i molekulyarnaya fizika». Moscow: MFTI Publ., 2024. URL: https://old.mipt.ru/upload/medialibrary/196/fefm.pdf
  15. Pozhalostin A.A., Goncharov D.A. On axisymmetric parametric oscillations of a fluid in a cylindrical vessel. Trudy MAI. 2017. No. 95. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=84412
  16. Rusanov A.I. Uspekhi kolloidnoi khimii. Tolshchina perekhodnykh sloev v teorii poverkhnostnykh yavlenii (Advances in Colloid Chemistry. Thickness of Transition Layers in the Theory of Surface Phenomena). Moscow: Nauka Publ., 1973. P. 39–43.
  17. Temnov A.N., Shkapov P.M., Chzhaokai Yu. Mechanical model of low-viscosity liquid sloshing with capillary effects. Trudy MAI. 2023. No. 129. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=173024. DOI: 10.34759/trd-2023-129–12
  18. Uingreiv Dzh. A., Shekhter S., Ueid V.Kh. Eksperimental'noe opredelenie zavisimosti poverkhnostnogo natyazheniya ot krivizny po rezul'tatam izucheniya techeniya zhidkosti. Sovremennaya teoriya kapillyarnosti: k 100-letiyu teorii kapillyarnosti Gibbsa (Experimental determination of the dependence of surface tension on curvature from the results of studying liquid flow. Modern theory of capillarity: on the 100th anniversary of Gibbs capillarity theory). Leningrad: Khimiya Publ., 1980. P. 245–273.
  19. Shcherbakov M.E., Kalaidin E.N. Height of micro- and nanodroplets in a model taking into account the thickness of the surface layer of the droplet. Izvestiya vysshikh uchebnykh zavedenii. Severo-Kavkazskii region. Series: Estestvennye nauki. 2023. No. 4. P. 55–60. (In Russ.)
  20. Shcherbakov M.E., Kalaidin E.N. Geometric characteristics of a nanodroplet. Ranking of drop energy. Izvestiya vysshikh uchebnykh zavedenii. Severo-Kavkazskii region. Series: Estestvennye nauki. 2023. No. 2 (218). P. 55–63. (In Russ.)
  21. Diaz M.E., Fuentes J., Cerro R.L., Savage M.D. An analytical solution for a partially wetting puddle the location of the static contact angle. Journal of Colloid and Interface Science. 2010. Vol. 348 (1), P. 232–239. DOI: 10.1016/j.jcis.2010.04.030
  22. Finn R. Equilibrium capillary surfaces. New York: Springer-Verlag, 1986. 245 p.
  23. Gibbs J.W. On the Equilibrium of Heterogeneous Substances. Transactions of the Connecticut Academy of Arts and Sciences. (1874-78). Vol. 3, P. 108-248.
  24. Gruber A. Curvature Functionals and p-Willmore Energy. Florida State University, 2019. 112 p.
  25. Israelachvili J. Intermolecular and Surface Force. Academic Press. 2011. Vol. 47, 704 p.
  26. Keller J.B., Merchant G.J. Flexural Rigidity of a Liquid Surface. Journal of Statistical Phisics. 1991. Vol. 63, No. 5/6, P. 1039–1051. 
  27. Tolman R.C. The effect of droplet size on surface tension. Journal of Chemical Physics. 1949. Vol. 17, P. 333–337. DOI: 10.1063/1.1747247


Download

mai.ru — informational site MAI

Copyright © 2000-2025 by MAI

Вход