Method for tomographic images processing for matrix cracking quantification in composite material

Аuthors
*, **, , ,Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
*e-mail: avpanteleev@inbox.ru
**e-mail: turbinnv@mai.ru
Abstract
The paper proposes an algorithm and software for automatic detection and analysis of transverse microcracks in layered composite materials based on a sequence of tomographic images. The relevance of the problem is due to the influence of microcracks on the operational and fundamental mechanical characteristics of composites, as well as the complexity of their detection by traditional non-destructive testing methods. The proposed two-stage algorithm includes a primary analysis of individual tomographic slices based on a combination of filtering methods, adaptive and simple binarization, boundary detection, a series of morphological transformations, and the Suzuki algorithm for finding contours. This stage is aimed at identifying potential crack areas and separating them from interlayer inclusions by analyzing and "subtracting" horizontal patterns from vertical ones. Secondary analysis is aimed at refining and tracking cracks along a sequence of slices. This step includes the formation of crack region sequences, filling in missing elements in these sequences by averaging coordinates, adjusting region sizes using the simple moving average method, checking the linearity of crack displacement using the second-order polynomial approximation using the least squares method, merging disparate sequences describing a single crack, and adding previously unidentified but relevant regions to existing trajectories based on the predicted position. The generated software accepts a sequence of composite microstructure images as input. The result of the work is a matrix with the coordinates of the upper left corner, the height and width of the identified cracks for each analyzed image, as well as output images with visualized crack regions. The proposed process allows automating the process of quality control and research of the internal structure of composite materials.
Keywords:
composite material, matrix cracking, computer tomography, filtration, binarization, morphological transformationsReferences
-
Gibson L.J., Ashby M.F. Cellular Solids: Structure and Properties. Cambridge Solid State Science Series. Cambridge University Press, 1997. 380 p.
-
Fleck N.A., Deshpande V.S., Ashby M.F. Micro-Architected Materials: Past, Present and Future. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2010. Vol. 466, No. 2121. P. 2495–2516. DOI: 10.1098/rspa.2010.0215
-
Karapiperis K., Kochmann D.M. Prediction and Control of Fracture Paths in Disordered Architected Materials Using Graph Neural Networks. Communications Engineering. 2023. DOI: 10.1038/s44172-023-00085-0
-
Alireza Taherzadeh-Fard, Alejandro Cornejo et al. A Rule of Mixtures Approach for Delamination Damage Analysis in Composite Materials. Composites Science and Technology. 2023. Vol. 242, P. 110160. DOI: 10.1016/j.compscitech.2023.110160
-
Zhang P. et al. Quantitative Analysis of Micro-Crack Precursors in Carbon/Epoxy Composites Using SEM. Composites Science and Technology. 2023. Vol. 230, P. 109750.
-
Liu Y., St-Pierre L., Fleck N.A., Deshpande V.S., Srivastava A. High Fracture Toughness Micro-Architected Materials. Journal of the Mechanics and Physics of Solids. 2020. Vol. 143, P. 104060. DOI: 10.1016/j.jmps.2020.104060
-
Demeshko Y., Bobyr M. Damage Models of Composite Materials. Journal Mechanics and Advanced Technologies. 2025. DOI: 10.20535/2521-1943.2025.9.1(104).313947
-
Krupenin A.M. New method for construction kinetic diagram by fatigue crack growth rate tests. Trudy MAI. 2024. No. 136. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=180667
-
Khomyakov O.O., Panishchev V.S., Titov V.S., Vatutin E.I. Mathematical model and a parallel algorithm for processing images containing symbolic information about products. Trudy MAI. 2024. No. 137. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=181884
-
Trusfus M.V., Abdullin I.N. Marker images detection algorithm for the unmanned aerial vehicle vertical landing. Trudy MAI. 2021. No. 116. (In Russ.). URL: https://trudymai.ru/eng/published.php?ID=121099. DOI: 10.34759/trd-2021-116-13
-
Zotov A.A., Reznichenko V.I. Kompozitsionnye materialy: klassifikatsiya, sostav, struktura i svoistva (Composite materials: classification, composition, structure and properties). Moscow: Vuzovskaya kniga Publ., 2023. 132 p.
-
Shapiro L., Stokman Dzh. Komp'yuternoe zrenie (Computer vision). Moscow: BINOM. Laboratoriya znanii Publ., 2015. 763 p.
-
Gonsales R., Vuds R. Tsifrovaya obrabotka izobrazhenii (Digital image processing). Moscow: Tekhnosfera Publ., 2024. 1104 p.
-
Suzuki S., K. Abe. Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing. 1985. Vol. 30, No.1. P. 32–46. DOI: 10.1016/0734-189X(85)90016-7
-
Makarov R.I., Khorosheva E.R. Metody analiza dannykh (Data Analysis Methods). Vladimir: Izd-vo VlGU Publ., 2021. 216 p.
-
NumPy documentation. URL: https://numpy.org/doc/
-
OpenCV: OpenCV modules. URL: https://docs.opencv.org/4.x/
-
C.-C. Chen, C.-H. Peng. Topology-Preserving Downsampling of Binary Images. In book: Computer Vision – ECCV 2024. P. 416-431. DOI: 10.1007/978-3-031-72661-3_24
-
Jain R., Kasturi R., Schunck B. Machine Vision. Computer science series. McGraw-Hill, 1995. 549 p.
-
Abu-Ain W., Abdullah S.N.H.S., Bataineh B., Abu-Ain T., Omar K. Skeletonization algorithm for binary images. Procedia Technology. 2013. Vol. 11, P. 704–709. DOI: 10.1016/j.protcy.2013.12.248
-
Boudaoud L.B., Sider A., Tari A. A new thinning algorithm for binary images. 2015 3rd international conference on control, engineering & information technology (CEIT). 2015. DOI: 10.1109/CEIT.2015.7233099
-
Wang J., Kosinka J., Telea A. Spline-based medial axis transform representation of binary images. Computers & Graphics. 2021. Vol. 98, P. 165–176. DOI: 10.1016/j.cag.2021.05.012
Download