Electromagnetic radiation shields based on crude iron production powdered waste

Material authority


Аuthors

Bojprav O. V.*, Borbotko T. V.**, Lynkov L. M.***, Sokolov V. B.

Belarusian State University of Informatics and Radioelectronics, BSUIR, P.Brovka str. 6, Minsk 220013, Belarus

*e-mail: boipravolga@rambler.ru
**e-mail: kafzi@bsuir.by
***e-mail: leonid@bsuir.by

Abstract

The purpose of present work is the development of the electromagnetic radiation shielding constructions based on crude iron production powdered waste (sludge treatment cupola gases), representing, as well as ferrites, metal oxides compounds. For purposes of this research sludge treatment cupola gases, characterized by the certain fractions size, was poured in a container with a rectangular cross section, made of radio transparent material and containing an insert made of molded pulp, and having a rectangular recess in the form of truncated pyramids slurry. Shielding characteristics measurements (reflection and transmission coefficients, power of the electromagnetic radiation passing through the shielding construction) were conducted in the frequency range from 0,8 up to 18 GHz using panoramic meter transmission and reflection coefficients, the transmitting and receiving antennas, electromagnetic radiation power meter. It was found that the magnetic properties and grain size of sludge treatment cupola gases have a greater impact to the transmission coefficients than reflection coefficients of electromagnetic radiation shielding constructions produced on the basis of sludge treatment cupola gases.
The developed electromagnetic radiation shielding constructions can be mounted on the walls of anechoic chambers, in which high-precision and sensitive to electromagnetic interference equipment (satellite systems, ground penetrating radar, marine beacons, etc.) is tested. Also it’s possible to implement multi-layered design electromagnetic radiation shields of gradient type on the basis of powdered sludge treatment cupola gases using technology described in this paper. Furthermore, the sludge treatment cupola gases can be used as filler in the manufacture of single and multilayer electromagnetic radiation shields of composite type, characterized according to the type of binding solution (portland cement, silicone, etc.) by various physical properties, in the manufacture of coating or filling solution for electromagnetic radiation shielding constructions with geometrically inhomogeneous surface.

Keywords:

reflection coefficient, transmission coefficient, relative permeability, crude iron production powdered waste, shielding, electromagnetic radiation

References

  1. Bakanov G.F., Sokolov S.S., Suhodol'skij V.Ju. Osnovy konstruirovanija i tehnologii radiojelektronnyh sredstv (Fundamentals of design and technology of radio-electronic means), Moscow, 2007, 368 p.
  2. Gurevich A.G. Magnitnyj rezonans v ferritah i antiferromagnetikah (Magnetic resonance in ferrites and antiferromagnets), Moscow, 1973, 593 p.
  3. Girtovich N.G. Spravochnik po chugunnomu lit'ju (Handbook on found casting), Leningrad, 1978, 758 p.
  4. Blagonravov B.P., Grachev V.A., Suharchuk Ju.S. Pechi v litejnom proizvodstve (Furnaces in the foundary industry), Moscow, 1989, 156 p.
  5. Bojprav O.V., Neamah M.R., Sokolov V.B. Doklady BGUIR, 2012, vol. 63, no 1, pp. 70-75.
  6. Bojprav O.V., Neamah M.R., Sokolov V.B., Borbot'ko T.V. Telekommunikacii: seti i tehnologii, algebraicheskoe kodiro-vanie i bezopasnost' dannyh, Sbornik statei, Minsk, 2012, pp. 75-79.
  7. Velikanov D.A., Jurkin G.Ju., Patrin G.S. Nauchnoe priborostroenie, 2008, vol. 18, no. 4, pp. 86-94.
  8. Mishin D.D. Magnitnye materialy (Magnetic materials), Moscow, 1991, 384 p.
  9. Andreev V.M. Materialy mikrojelektronnoj tehniki (Microelectronic materials of technigue), Moscow, 1999, 352 p.
  10. Preobrazhenskij A.A., Bishard E.G. Magnitnye materialy i jelementy (Magnetic materials and elements), Moscow, 1986, 352 p.
  11. Vosnovskij S.V. Magnetizm (Magnetism),Moscow, 1971. 1032 p.
  12. Belov K.P. Magnitnye prevrashhenija (Magnetic transformation), Moscow, 1959, 260 p.
  13. Ivlev Ju.N. Himija radiomaterialov (Chemistry of radiomaterials), Moscow, 2002, 135 p.
  14. Smit Ja., Vejn H. Ferrity (Ferritis), Moscow, 1962, 504 p.
  15. Ufimcev P.Ja. Metod kraevyh voln v fizicheskoj teorii difrakcii (Method of edge waves in physical theory of diffraction), Moscow, 1962, 244 p.
  16. Landau L.D., Lifshic E. M. Teoreticheskaja fizika (Theoretical physics), Moscow, 1987, vol. VIII, 607 p.
  17. Alekseev A.G., Shtager E.A., Kozyrev S.V. Fizicheskie osnovy tehnologii Stealth (Physical basis of Stealth technology), SPb, 2007, 356 p.
  18. Kozlovskij V.V., Sofienko I.I. Vіsnik Derzhavnii Unіversitet Іnformatsіino-Komunіkatsіinikh Tekhnologіi , 2009, vol. 7, no. 3, pp. 233-245.
  19. Bojprav O.V., Neamah M.R. Jekologicheskie problemy XXI veka.Saharovskie chtenija Sbornik statei, Minsk, 2012, pp. 303-304.
  20. Bojprav O.V., Neamah M.R., Timofeeva I.A. Sovremennye problemy radiotehniki i telekommunikacij, Sbornik statei, Sevastopol', 2012, pp.387- 388.
  21. Bojprav O.V., Neamah M.R., Al'-Saidi R.T. Materialy, oborudovanie i resursosberegajushhie tehnologii, Sbornik statei, Mogilev, 2012, pp. 110-111.
  22. Bojprav O.V., Neamah M.R., Stepanova E.A., Borbot'ko T.V. Sovremennye metody i tehnologii sozdanija i obrabotki materialov, Sbornik statei, Minsk, 2012, pp. 293-297.
  23. Bojprav O.V., Neamah M.R., Lyn'kov L.M., Borbot'ko T.V., Sokolov V.B. Bezopasnost' informacionnyh tehnologij, Minsk, 2012, no. 1, pp. 48-50.
  24. Bojprav O.V., Neamah M.R., Borbot'ko T.V. Upravlenie informacionnymi resursami, Sbornik statei, Minsk, 2012, pp. 67-68.
  25. Bojprav, O. V., Neamah M.R., Al'-Saidi R.T. Aktual'nye voprosy fiziki i tehniki ,Sbornik statei, Gomel', 2012, pp. 16-18.

Download

mai.ru — informational site MAI

Copyright © 2000-2021 by MAI

Вход