Stability of shielding characteristics of liquid-containing materials under conditions of water phase transformation

Material authority


Аuthors

Pukhir G. A.*, Nasonova N. V.**, Lynkov L. M.***

Belarusian State University of Informatics and Radioelectronics, BSUIR, P.Brovka str. 6, Minsk 220013, Belarus

*e-mail: aleks@bsuir.by
**e-mail: NasonovaN@bsuir.by
***e-mail: leonid@bsuir.by

Abstract

The progress in the development of electromagnetic radiation shielding and absorbing materials includes a synthesis of composite liquid-containing materials. The mechanical parameters of the materials are ensured by a porous matrix (which can be ordered or disordered, fibrous or powder) and a polymer binder. The shielding effectiveness of the composite materials is produced by the properties of the liquid, which fills the pore space of the matrix.
The stability of the electromagnetic parameters of the liquid-containing materials mainly depends on the temperature dependence of the water dielectric permittivity and doesn’t change significantly up to a temperature of +50°С. The issue of interest is the investigation of the material characteristics behavior at the points of phase transformation of water, which is the main component of such shielding materials.
The work is aimed at exploration of the influence of the physic-chemical processes, taking place in the volume and on the surface of the liquid-containing composite materials, when the temperature alters in a wide range, upon the stability of their shielding characteristics.
The liquid-containing powder and fibrous adsorbents in a silicone polymer were subjected to a step heating up to +150°С under a gravimetric control of their residual water content and shielding characteristics through measuring the EMR transmission and reflection coefficients in the frequency range of 8…12 GHz by a scalar network analysis technique.
Development of weather-proof electromagnetic shields and absorbers is as important as to ensure the high shielding effectiveness. The influence of the adsorbent matrix type and solution content upon the shielding effectiveness was determined. The samples based on fine powders are characterized by a high flexibility, good manufacturability and shielding effectiveness comparable to the similar thicker samples. The EMR reflection coefficient of powder-based samples 2 mm in thickness on a metal plate is -8.5…-12.0 dB for water-containing samples and -13.0…-17.8 dB for the samples, containing the hygroscopic solution.
The composite materials based on liquid-containing powders, distributed within an elastic polymer, are suggested for flexible electromagnetic shields and absorbers designs, capable of effective protection of stationary and mobile objects under high temperature, with a high stability of their shielding characteristics.

Keywords:

electromagnetic radiation shield, composite materials, liquid-containing matrrials, temherture dependency of shielding effectiveness

References

  1. Borbot'ko T.V., Kolbun N.V., Lyn'kov L.M., Tereh I.S., Hizhnjak A.V. Poglotiteli jelektromagnitnogo izluchenija. Primenenie v vooruzhennyh silah (Absorbers of electromagnetic radiation. Application in the military), Minsk, Bestprint, 2006, 228 p.
  2. Borbot'ko T.V., Kolbun N.V., Lyn'kov L.M. Antropogennye istochniki jelektro-magnitnogo izluchenija. Bezopasnost' zhiznedejatel'nosti cheloveka (Anthropogenic sources of electromagnetic radiation. Safety of life), Minsk, Bestprint, 2008, 214 p.
  3. Al'ljabad H.M., Pulko T.A., Nasonova N.V., Lyn'kov L.M. Passivnye tehnicheskie sredstva obespechenija informacionnoj bezopasnosti ot utechki po jelektromagnitnomu, opticheskomu i akusticheskomu kanalam (Passive technology-based security against leakage of the electromagnetic, optical and acoustic channels), Minsk, Bestprint, 2010, 225 p.
  4. Lyn'kov L.M., Bogush V.A., Borbot'ko T.V., E.A. Ukraine E.A., Kolbu N.V. Doklady BGUIR , 2004, vol. 2, no. 5, pp. 152–167.
  5. Kolbun N.V., Borbotko T.V., Kazeka A.A., Proudnik A.M., Lynkov L.M.. Simulation of electromagnetic radiation passing through liquid-containing nanostructured materials, Proc. of SPIE, 2009, vol. 7377, pp. 73770A1-73770A-6.
  6. Puhir G.A., Pulko T.A. Materialy XVI Mezhdunarodnoj nauchno-tehnicheskoj konferencii «Sovremennye sredstva svjazi» , Minsk, 2011, pp. 101-115.
  7. Kolbun N.V., Lyn'kov L.M., Borbot'ko T.V., Bogush V.A. Prikladnye nauki , Bulletin of PSU, Ser.С 2004, no. 12, pp. 30–34.
  8. Kolbun N.V., Al'ljabad H.M., Lyn'kov L.M. Vestnik voennoj akademii Respubliki Belarus', 2008, no. 2 (19), pp.71-74.
  9. Kolbun N. Temperature dependence of electromagnetic radiation attenuation by water-containing materials with dispersed structure, Proc. of XXVIIIth General Assembly of the International Union of Radio Science in New Delhi, India, 2005, 100 p.
  10. Lyn'kov L.M., Borbot'ko T.V., Kolbun N.V., Fan N. Zang, Tereh I.S. MPK po voenno-tehnicheskim problemam oborony i bezopasnosti, ispol'zovaniju tehnologij dvojnogo primenenija, Sbornik statei, Minsk, 2005, pp. 42-43.
  11. Bogdanov E.V., Mantrova M. Biomedicinskaja radiojelektronika, 2000, no. 7, pp.19–28.
  12. Gapochka L.D., Gapochka M.L., Korolev A.F., Roshhin A.V., Suhorukov A.P., Sysoev N.N., Timoshkin I.V. Biomedicinskaja radiojelektronika , 2000, no. 3, pp. 48–55.
  13. Petrosjan V.I., Sinicyn N.I., Jolkin V.A., Bashkatov O.V. Biomedicinskaja radiojelektronika , 2000, no. 2, pp.10–19.
  14. Benzar' V.K. Tehnika SVCh-vlagometrii (Microwave moisture metering equipment), Minsk, Vyshaja shkola, 1974, p. 374.
  15. Gajduk V.I., Liberman B.M., Apletalin V.N., Meriakri V.V. Radiotehnika i radiojelektronika ,1999, vol. 44, no. 2, pp. 234–242.
  16. Ryszard S. Jachowicz. Moisture content measurements in solid limitations and improvements with modern technology, Electromagnetic wave interaction with water and moist substances: Collect. of papers of 3-d workshop, Georgia, USA, 1999, pp.32–41.
  17. Pulko, T.A., Al'ljabad Hussejn Mohammed, Nasonova N.V. Inzhenernyj vestnik , Minsk, 2010, no. 2(30), pp. 32-34.
  18. Kolbun N.V., Zang Fan N. Izvestija Belorusskoj inzhenernoj akademii , 2004, no. №2 (18)/2, pp. 158-159.
  19. Puhir G.A., Mahmud M.Sh., Lyn'kov L.M. Doklady BGUIR , Minsk, 2011, no. 8 (62), pp. 99-102.
  20. Puhir G.A., Al'-Mahdi M. Materialy IХ Belorussko-rossijskoj nauchno-tehnicheskoj konferencii «Tehnicheskie sredstva zashhity informacii» , Minsk, 2011, pp. 74-75.
  21. Kolbun N., Pulko T., Proudnik A., Lynkov L. Stabilization of shielding efficiency of electromagnetic radiation shields based on liquid-containing composite materials, Proc. of the 18th International Conference "Electromagnetic disturbances EMD 2008", 2008, Vilnius, Lithuania, pp.191-194.
  22. Metod teplovizionnogo kontrolja kachestva teploizoljacii ograzhdajushhih konstrukcij. GOST 26629-85 (The method of thermal insulation quality enclosing structures, State Standart 26629-85), Moscow, Standarty, 1985, p. 12.
  23. Kornev A.E., Bukanov A.M., Sheverdjaev O.N. Tehnologija jelastomernyh materialov (Technology of elastomeric materials), Moscow, MGOU, 2005, p. 472.
  24. Laskorin B.N., Strel'ko V.V., Strazhesko D.N., Denisov V.N. Sorbenty na osnove silikagelja v radiohimii (Silica-based sorbents in radiochemistry), Moscow, Atom-izdat, 1974, p. 304.

Download

mai.ru — informational site MAI

Copyright © 2000-2021 by MAI

Вход