Numerical study of multiple turbulent supersonic impinging

Mathematics. Physics. Mechanics


Аuthors

Kudimov N. F.1*, Safronov A. V.2**, Tretiyakova O. N.***

1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. Central Research Institute of Machine Building, 4, Pionerskaya st., Korolev, Moscow region, 141070, Russia

*e-mail: itterasai@gmail.com
**e-mail: avsafron@tsniimash.ru
***e-mail: tretiyakova_olga@mail.ru

Abstract

In this paper the triblock and single supersonic turbulent underexpanded jets are numerically studied. The primary goal of the current research is to provide the numerical simulation for analysis of multiple turbulent supersonic underexpanded jets interacting with the barrier. Calculation grid consists of 2 million cells that makes possible to provide the quite good modeling of expansion waves and shock wave such as incident shock as well as the reflected shock and slip stream line in supersonic jets. Numerical simulation was based on the three-dimensional Reynolds equations with turbulent model SST. Three-dimensional compressible Reynolds equation was solved with the help of finite volume method of Godunov TVD scheme type with the second order of approximation in space discretization.
Depending on distance between nozzles and the barrier there are complex three-dimensional turbulent flow structures with areas of subsonic and supersonic flow, shock, rarefaction areas, viscous-inviscid interaction in turbulent mixing layer. This paper presents wall surface pressure distribution at various distances from nozzles to the barrier and its comparison with experimental data.

Keywords:

numerical simulation, multiple jets, instability of flow

References

  1. Kudimov N.F., Safronov A.V., Tretiyakova О.N. Elektronnyi zhurnal «Trudy MAI», 2013, vol.69, available at: http://www.mai.ru/science/trudy/published.php?ID=43062 (accessed 08.10. 2013)
  2. Molesson G.V. Trudy CAGI, 1988, vol. 2411, pp. 30-41.
  3. Adrianov A.L., Bezrukov A.A., Gaponenko U.A. Prikladnaya mekhanika i tehnicheskaya fizika,2000, vol. 41, no.4, pp.106-111.
  4. Alvi F. S., Ladd J. A., and Bower W. W. Experimental and Computational Investigation of Supersonic Impinging Jets, AIAA Journal , 2002, vol. 40, pp. 599–609.
  5. Abdel-Fattah A. Numerical and experimental study of turbulent impinging twin-jet flow, Experimental Thermal and Fluid Science , 2007, vol. 31, pp. 1061-1072.
  6. Kharoua N., L. Khezzar L. Flow Asymmetry in Symmetric Multiple Impinging Jets: A Large Eddy Simulation Approach, The Journal of Engineering Research, 2011, vol. 8, no. 2, pp. 40-48.
  7. Caggese O., Gnaegi G., Hannema G., Terzis A., Ott P. Experimental and numerical investigation of a fully confined impingement round jet, International Journal of Heat and Mass Transfer, 2013, vol. 65, pp. 873-882.
  8. Dubs P., Khalij M., Benelmir R., A. Tazibt A. Study on the dynamical characteristics of a supersonic high pressure ratio underexpanded impinging ideal gas jet through numerical simulations, Mechanics Research Communications, 2011, vol. 38, pp. 267-273.
  9. Dharavath M., Chakraborty D. Numerical Simulation of Supersonic Jet Impingement on Inclined Plate , Defence Science Journal, 2013, vol. 63, no. 4, pp. 355-362.
  10. Nguyen L., Golubev V., Mankbadi R. Large-Eddy Simulations of Subsonic Impinging Jet, World Academy of Science, Engineering and Technology, 2013, vol.78, pp. 1629-1637.
  11. Yaga M., Okano M., Tamashiro M., Oyakawa K. Experimental and numerical study of twin underexpanded impinging jets, J. of Thermal Science, 2003, vol. 12, no. 3, pp. 255-259.
  12. Menter, F.R. Zonal two-equation k-ω turbulence models for aerodynamic flows. Proc. 24th Fluid Dynamics Conf., Orlando, Florida, USA, AIAA Paper 1993-2906, pp. 61-80.
  13. Lunev V.V., Gubanov O.I., Plastinina L.I., Izvestiya USSR , Fluid Dynamic, 1971, vol.2, pp.135-138.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход