The research wing of aerodynamic characteristics with a projection at different angles of deflection projections and different layouts of the wing of a seaplane at the joints

Aviation technologies


Sakornsin R.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia



As a result of observations of the shape of the bird wings and the analysis of the positive impact on the aerodynamics of the wing vortices, it was decided to use a triangular protrusion for the wings of a modern flying boat. At that it is possible to observe the improvement of the wing aerodynamic efficiency. The circulation of the speed along the airfoil contour of the wing with a triangular protrusion was analyzed at different wing positions. The research of the wing with the different projection angles of protrusion deflection was also carried out.
The shape of the wing-to-fuselage joint within the flying boat wing layout influences the aerodynamic characteristics of the aircraft. We design two types of wing joints for the traditional high-wing flying boat and consider its aerodynamic characteristics and position of the mean aerodynamic center without the horizontal tail surfaces.
A number of numerical calculations was carried out with the help of the ANSYS Fluent 14,5 computational fluid dynamics software (license number 670351) to determine the overall aerodynamic coefficients and model the flow in the vicinity of the wing. These calculations confirmed the positive effect of the triangular protrusions on the aerodynamics of a flying boat wing.


amphibious aircraft, fezyulyazh wing and flying boat, bird wing, wing with triangular protrusion, the Reynolds-averaged Navier-Stokes equations, the SIMPLEC method, turbulence models, aerodynamic coefficients


  1. Badyagin A.A., Mukhamedov F.A. Proektirovanie legkikh samoletov (Design of light aircraft), Moscow, Mashinostroenie, 1978, 208 p.
  2. Anderson John D., Jr. Introduction to Flight [Paperback]. – McGraw–Hill Higher Education; 4th edition, March 1, 2000, 784 p.
  3. Anderson John D. Fundamentals of Aerodynamics, McGraw–Hill Science/ Engineering, 2001, 892 p.
  4. Arep'ev A.N. Proektirovanie legkikh passazhirskikh samoletov (Design of light passenger aircraft ), Мoscow, MAI, 2006, 640 p.
  5. Bondarev E.N., Dubasov V.T., Ryzhov Yu. A. Ajerogidromehanika (Aerohydrodynamics), Мoscow, Mashinostroenie, 1993, 608 p.
  6. Maskalik A.I., Nagapetyan R.A., Ivanenko V.V., Butlitskii R.A., Tomilin V.V., Luk'yanov A.I. Jekranoplany— transportnye suda XXI veka (Ekranoplans-Transport Ships XXI century),St. Peterburg, Sudostroenie, 2005, 547 p.
  7. Volkov G. Osnovy gidroaviatsii (Fundamentals of hydro aviation), Мoscow, Voenizdat,1940, 248 p.
  8. Munro V. Proektirovanii i raschet gidrosamoletov (Engineering and Design of Seaplanes), Moscow, Glavnaya redaktsiya aviatsionnoi literatury, 1935, 147 p.
  9. Neal L., Neal H., Mujezinovic D. Wingtip Devices, Virginia Polytechnic Institute and State University, 2004, 26 p.
  10. Samsonov P.D. Proektirovanie i konstruktsii gidrosamoletov (Design and construction of seaplanes), Moscow, Glavnaya redaktsiya aviatsionnoi literatury, 1936, 372p.
  11. Arzhanikov N.S., Sadekova G.S. Ajerodinamika letatel'nykh apparatov (Aerodynamics of Aircraft), Мoscow,Vysshaja shkola, 1983, 359p.
  12. Streit Th., Ronzheimer A., BüScher A. Numerical analysis of transport aircraft using different wing tip devices. New Results in Numerical and Experimental Fluid Mechanics. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2006, vol. 92, 2006, pp. 59-68.
  13. Frank T. Zurheide, Matthias Meinke and Wolfgang Schröder. Meandering of Wing-Tip Vortices Interacting with a Cold Jet in the Extended Wake. High Performance Computing on Vector Systems, 2008, pp. 223-242.
  14. Liang Yun, Alan Bliault, Johnny Doo. WIG Craft and Ekranoplan: Ground Effect Craft Technology, Springer; 2009, 458 p.
  15. Bredshou P. Vvedenie v turbulentnost' i ee izmerenie (An introduction to turbulence and its measurement), Мoscow, Mir, 1974 , 279 p.
  16. G. Shlikhting. Teoriya pogranichnogo sloya (The theory of the boundary layer), Мoscow, Nauka, 1974 , 712 p.
  17. Wilcox D.C. Turbulence modeling for CFD, DCW Industries Inc., 1998, 537 p.
  18. Belov I.A., Isaev S.A. Modelirovanie turbulentnykh techenii (Simulation of turbulent flows), St.Peterburg, Balt University, 2001, 109 p.
  19. Chklovski T. Pointed-Tip Wings at Low Reynolds Numbers, The University of Southern California, USA, 2012.
  20. Guerrero M., Clark D. Yak 52 Wingtip Design, San Jose State University, California, ME195B, 2010, 93 p.
  21. Ruppell G. Bird Flight, Van Nostrand Reinhold Co., New York, 1977, 191p.
  22. Kolesnikov G.A., Markov V.K., Mikhailyuk A.A. Aerodinamika letatel'nykh apparatov (Aerodynamic aircraft), Мoscow, Mashinostroenie, 1993, 544 p.
  23. Sakornsin R., Popov S.A. Elektronnyi zhurnal “Trudy MAI”, 2012, no.57, available at: (accessed 30.06.2012)
  24. Sakornsin R., Popov S.A. Elektronnyi zhurnal “Trudy MAI”, 2013, no. 65, available at: (accessed 19.06.2013)
  25. Fol'' T'erri , Zhimene Filipp , Name Arno. Patent RU 2424157 C2, 06.11.2006.
  26. Bulat P. Pro adaptivnoe krylo, naplyvy i mnogoe drugoe,
  27. Kryukov I.A. povyshenie nadezhnosti vychislenii sispol'zovaniem k-ε modeli turbulentnosti (Improve the reliability of the calculations by using for to к-ε turbulence model), PhD thesis, Moscow, 2003, 129 p.
  28. David C. Wilcow Turbulence Modeling for CFD DCW Industries, Inc., Canada, California 1993, 460 p.
  29. Shlichting G. Teoriya pogrannichnogo sloya (Boundary-layer theory), Moscow, Nauka, 1974, 712 p.
  30. Belov I.A., Isaev S.A. Modelelirovanie turbulentnykh techennii (Modelelirovanie of turbulent flows), St.Peterburg, 2001, 108 p.
  31. Introduction to CFD Analysis, Introductory Fluent Notes, Fluent,2002, 71 p.

Download — informational site MAI

Copyright © 2000-2024 by MAI