Problems analysis of using of four electrodes ion-optic systems in electric propulsion thrusters

Aerospace propulsion engineering


Аuthors

Kazakov E. N.1*, Smirnova M. E.2**, Khartov S. A.***

1. Progresstech, Electrozavodskaya street, 14, (1), Moscow , 107023, Russia
2. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: enkazakov@yandex.ru
**e-mail: k208@mai.ru
***e-mail: skhartov@ya.ru

Abstract


Future trends for space scientific-research activities make demands to the spacecraft and propulsion systems for them. Worldwide space programs and near-earth objects infrastructure evolution analysis enable the effective usage of electric propulsion for many of the delivered tasks. This paper focuses on analysis of one of the best possibility to increase engines performances and lifetime without bringing too many changes in the thruster design.
One of the main aims of this work was to find out if four electrode ion-optic systems could bring appreciable result to increasing lifetime, thrust and specific impulse of ion thrusters in comparison with its conventional three electrode systems. For that the analysis of state-of-the-art of ion thrusters was performed and all available results of integral performances were included into the summary table. As a result the current ranges for main thruster parameters were defined.
In the paper it is also presented some estimations of efficiency and expediency of usage of four electrodes ion-optic systems for one of most prospective technology for future applications – ion thrusters. Benefits arising from this issue delivered as a conclusion.

Keywords:

electric propulsion, ion-optical system, ion beam extraction, beam focusing

References

  1. Federal’naya kosmicheskaya programma Rossii (Federal space program of Russian Federation), available at: http://www.federalspace.ru/115, 2005
  2. Cosmic Vision: Space Science for Europe 2015-2025, available at: http://sci.esa.int/cosmic-vision/38542-esa-br-247-cosmic-vision-space-science-for-europe-2015-2025, 2005
  3. NASA Strategic Plan 2011, available at: http://www.nasa.gov/pdf/516579main_NASA2011StrategicPlan.pdf, 2011
  4. High Power Electric Propulsion:a Roadmap for Future Exploration, Space Conference ,(7th Frame Programme ), Budapesht, 2011, pp. 1-36.
  5. Goebel Dan M., Katz Ira. Fundamentals of Electric Propulsion: Ion and Hall Thrusters, John Wiley & Sons, California, 2008, 486 p.
  6. Casaregola C., Cesaretti G., Andrenucci M. European Programme to Develop Electric Propulsion Technologies for Future Space Exploration, San Sebastian, Spain, 2010, pp. 1-8.
  7. Feili D., Collingwood C., Lotz B., Gaertner W., Loeb H., Del Amo J. G., Di Cara D. M. Ion Thrusters for Space Applications, 31st ICPIG, Granada, Spain, 2013, available at: http://www.icpig2013.net/poster_sessions.php?Session=2, 2013
  8. Fearn David G. The application of gridded ion thrusters to high thrust, high specific impulse nuclear-electric missions, Proceedings of the 55International Aeronautical Congress , Vancouver, Canada, IAC-04 , 2004, available at: http://www.iafastro.net/iac/archive/browse/IAC-05/C3/5/3052/, 2004
  9. Bombardelli C. Removing space debris and deflecting asteroids with ion beams, 4th Russian-German Conference On Electric Propulsion And Their Applications «Electric Propulsion, New Challenges», Russia, 2012, available at: http://www.mai.ru/science/trudy/published.php?ID=35099&eng=Y, 2012
  10. Grigor’jan V.G. Sistemy uskorenija jelektrostaticheskih DLA (Acceleration Systems of Electrostatic Thrusters for Spacecrafts), Moscow, MAI, 1984, 34p.
  11. Auweter-Kurtz, M., Bruno C., Fearn D. G., Kurtz H., Lawrence T.J., Lenard R.X. Nuclear Space Power and Propulsion, IAA Commission III, 2001, 257p.
  12. Leiter H. J., Killinger R. The «New Grid Systems for Ion Engines» Technology Project — Assessment and Outlook, 42th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA 2006-5000, Sacramento, California, 2006.
  13. Gabovich M. D., Pleshivcev N. V., Semashko N. N. Puchki ionov i atomov dlja upravljaemogo termojadernogo sinteza i tehnologicheskih celej (Ion and Atom Beams for Controlled Fusion and Technological Applications), Moscow, Energoatomizdat, 1986, 248 p.
  14. Nakayama Y., Wilbur Paul J. Numerical Simulation of Ion Beam Optics for Many-grid Systems, 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA 2001-3782, Salt Lake City, Utah, 2001
  15. Dual-Stage Gridded Ion Thruster (DS4G), available at: http://www.esa.int/gsp/ACT/pro/projects/ds4g_overview.html, 04.2006
  16. Walker R., Bramanti C., Sutherland O., Boswell R., Charles C., Fearn D., Gonzalez Del Amo J., Frigot P. E., Orlandi M. Initial Experiments on a Dual-Stage 4-Grid Ion Thruster for Very High Specific Impulse and Power, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA 2006-4669, Sacramento, California, 2006.
  17. Coletti M., Gabriel S. B. Numerical Investigation of a Dual Stage Variable Isp Ion Engine, 32nd International Electric Propulsion Conference, IEPC-2011-204, Wiesbaden, Germany, 2011.
  18. Coletti M., Marques R. I., Gabriel S. B. Discharge Hollow Cathode Design for a 4-Gridded Ion Engine, Aerospace Conference, IEEE, 978-1-4244-3888-4/10/, 2010.
  19. Tutorial to EGUN-IGUN software, available at: http://www.egun-igun.com/, 1992.
  20. Loeb H.W., FeiliD., Popov G.A., Obukhov V.A., Balashov V.V., Mogulkin A.I., Murashko V.M., Nesterenko A.N., Khartov S. Design ofHigh-Power High-Specific Impulse RF-Ion Thruster, 32nd International Electric Propulsion Conference, IEPC-2011-290, Wiesbaden, Germany, 2011.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход