Parameters estimation of thermionic thermal protection functioning of hypersonic flying vehicles

Aviation technologies


Kolychev A. V.

Baltic State Technical University “VOENMEH ” named after D.F. Ustinov, 1, 1st Krasnoarmeyskaya str., Saint Petersburg, 190005, Russia



At the present time the working out and making of hypersonic flying machines (HFM) which can become a base of perspective systems for deducing of payload and vehicles is actual. The intensive aerodynamic heating of nose parts and forward edges of wings and other devices of construction HFV leads to the necessary presence of thermal protection systems.
The purpose of the given work is carrying out numerical estimation of functioning parameters of thermionic thermal protection (TTP) of HFV construction devices (CD) in condition of an aerodynamic heating. On the basis of obtained estimations it is possible to make a decision about expediency of integration TTP into a HFV composition of various types and determinate possible onboard consumers of generated electrical energy.
At the heart of TTP the phenomenon of emission of electrons by heated metal (a thermionic emission) is necessary. During to the motion in atmosphere with hypersonic speeds the exterior shell heats up to temperatures, at which because of the expense of thermal energy obtained by aerodynamic heating from its interior surface the hot electrons besieged then on an interior shell (anode) start to take off. It means that at the given stage electrons are carriers of heat or «coolants» of an exterior shell, which is the cathode. That’s how an electronic cooling of an exterior shell and principle TTP is realized.
The basic particularity of TTP is essential decrease in thermal action on construction HFV devices during aerodynamic heating by the expense of thermal energy transformation of heating CD into a significant amount of electrical energy onboard HFV. Devices realizing TTP can be parted on two types: with interior issue and with exterior issue.
The TTP mathematical model of wings forward edges and nose parts, and TTP design procedures were carried out for achievement of the specified purpose. Developed model and design procedures have the worldwide novelty confirmed by patents for the invention. On the basis of obtained effects the analysis of possible HFV perspective onboard systems (consumers of electrical energy) is carried out.
The TTP realization will allow to provide implementation of other systems guided on the maintenance of long-term hypersonic flight, for example, methods for magnetoplasma aerodynamics.
The given analyses is a basis for examination of thermionic thermal protection.
Thermionic thermal protection is a new object of space-rocket technics. Obtained effects provide modernity for new object of space-rocket technics.


thermionic issue, electronic cooling, electric energy, the hypersonic flying vehicle, thermal protection


  1. Nikitin P.V. Teplovaya zathita (Thermal protection), Moscow, MAI, 2006, 512 p.
  2. Neyjland V.Ya., Tumin A.M., Aehrotermodinamika vozdushno-kosmicheskikh samoletov (Aerothermodynamics of aerospace planes). Zhukovskii, FALT MFTI, 1991, 201 p.
  3. Polezhaev Yu.V., Yurevich F.B., Teplovaya zaschita (Thermal protection), Moscow, Energiya, 1976, 392p.
  4. Ushakov B.A., Nikitin V.D., Emeljyanov I.Ya. Osnovih termoehmissionnogo preobrazovaniya ehnergii (Fundamentals for thermionic transformation of energy), Moscow, Atomizdat, 1974, 288 p.
  5. Kvasnikov L.A., Kayjbihshev V.Z., Kalandarishvili A.G. Rabochie processih v termoehmissionnihkh preobrazovatelyakh yadernihkh ehnergeticheskikh ustanovok (Working processes in thermionic transformers of nuclear energy installations), Moscow, MAI, 2001, 208 p.
  6. Kernozhickiyj V.A., Kolihchev A.V., Okhochinskiyj D.M. Patent RU 2404087, 20.11.2010.
  7. Kernozhickiyj V.A., Kolihchev A.V., Okhochinskiyj D.M. Patent RU 2430857, 10.10.2011.
  8. Kernozhickiyj V.A., Kolihchev A.V., Okhochinskiyj D.M. Patent RU 95637, 10.07.2010.
  9. Kolihchev A.V. Kernozhickiyj V.A. Elektronnyi zhurnal «Trudy MAI», 2012, no. 51, available at: (accessed 4/20/2012)
  10. Kolihchev A.V. Kernozhickiyj V.A. Elektronnyi zhurnal «Trudy MAI», 2013, no 68, available at: (accessed 9/24/2013)
  11. Kernozhickiyj V.A., Kolihchev A.V., Okhochinskiyj D.M. Patent RU 132050, 10.09.2013.
  12. Avduevskiyj V.S., Galiceyjskiyj B.M., Glebov G.A.. Osnovih teploperedachi v aviacionnoyj i raketno-kosmicheskoyj tekhnike (Heat transfer fundamentals in aviation and space-rocket technics: the Textbook for aviation specialties of high schools), Moscow, Mashinostorenie, 1992, 528 p.
  13. Kemp Riddell Nauchnyie problemyi iskusstvennyih sputnikov, Sbornik statey, Moscow, Inostrannaya literatura, 1959, pp. 297-319.
  14. Stark Rouz. Problemyi dvizheniya golovnoy chasti raket dalnego deystviya. Sbornik statey. Moscow, Inostrannaya literatura, 1959, pp. 277-311.
  15. Wilson V.C., Podkulski S.P. Characteristics of a thermionic converter with a chloride vapour deposited tungsten emitter (110) and a nickel collector. NASA contractor report CR-1416, WASHINGTON, D.C., 1969, 41 p.
  16. Askerov F.A., Atamasov V.D., Poletaev B.I. Kosmonavtika XXI veka i yadernyie termoemissionnyie energeticheskie ustanovki (Astronautics of the XXI century and nuclear thermionic energy installations), Moscow, Nauka, 2001, 380p.
  17. Vargaftik N.B. Teplofizicheskie svoystva nekotoryih aviatsionnyih topliv v zhidkom i gazoobraznom sostoyanii (Thermal-physics properties of some aviation fuels in liquid and gaseous form), Moscow, Oborongiz, 1961, 162 p.
  18. Lunev V.V. Techeniya realnyih gazov s bolshimi skorostyami (Real gases flows with high velocities), Moscow, FIZMALIT, 2007, 760 p.
  19. Leonov S.B. Control of Flow Structure and Ignition of Hydrocarbon Fuel in Cavity and behind Wallstep of Supersonic Duct by Filamentary DC Discharge, Final Project Technical Report AFRL-AFOSR-UK-TR-2010-0013, 2010.

Download — informational site MAI

Copyright © 2000-2021 by MAI