Investigation of the multipath effect on the estimation of the GNSS signal parameters using simulator of navigation field

Control and navigation systems


Аuthors

Valaitite A. A.*, Nikitin D. P.**, Sadovskaya E. V.***

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: alinavalaytite@gmail.com
**e-mail: DNikitin@topcon.com
***e-mail: elena_93@list.ru

Abstract

This paper considers the possibility of assessing influence of the reflected signal on the parameters of the GNSS signal from the simulator satellite navigation signals Spirent, so that let getting measurements of the selected satellite when exposed only multipath errors. The research was depended of the multipath error of a GPS C/A signal in the presence of one of the reflected signal from the delay of given amplitude of the reflected signal and the comparison of experimental results with theoretical calculations. A result of comparison was revealed that the value of the envelope multipath errors are obtained in the real experiment, in a good agreement with the value of the envelope multipath errors are obtained by the theoretical calculation for the navigation signal receiver. This fact allow to use theoretical calculation at the design stage of a new receiver, in order to assess the influence of multipath errors on the accuracy of the measured navigation parameters at the selected frequency plan and the filter in a high-frequency part of the receiver. The results of field experiments can be used to analyze the ability of the equipment to withstand the multipath errors at a stage of mass production. A theoretical calculation and methodology are in the experimental study are universal and can be used to estimate the multipath error for any GNSS signal.

Keywords:

global navigation satellite system, multipath error, strobe method, navigation field simulator, GPS, pseudorandom number

References

  1. Boriskin A.D., Veitsel’ A.V., Veitsel’ V.A., Zhodzishskii M.I., Milyutin D.S. Apparatura vysokotochnogo pozitsionirovaniya po signalam global’nykh navigatsionnykh sistem. Priemnik — potrebitel’ navigatsionnoi informatsii (Apparatus for high accuracy positioning signals of global navigation systems: Receiver — consumer navigation information), Moscow, MAI, 2010, 292 p.
  2. Parkinson B. Spilker J. (ed.). Global Positioning System: Theory and Practice. Volumes I (694 p) and II (632 p). Washington, DC: American Institute of Aeronautics and Astronautics, Inc. 1996.
  3. Perov A.I., Kharisov V.N. GLONASS. Printsipy postroeniya i funktsionirovaniya. (GLONASS. Principles of construction and operation), Moscow, Radiotekhnika, 2010, 800 p.
  4. Mikhailov S.V. Besprovodnye tekhnologii, 2006, no. 2, pp. 60–71.
  5. Milyutin D.S., Nikitin D.P., Veitsel’ A.V. Vestnik Moskovskogo aviatsionnogo instituta, 2009, vol.16, no. 6, pp. 120-124.
  6. Veitsel’ A.V., Zhodzishskii M.I., Milyutin D.S. Informatsionno-izmeritel’nye i upravlyayushchie sistemy, 2009, no. 8, pp. 34-41.
  7. Veitsel’ A.V., Veitsel’ V.A., Tatarnikov D.V., Zhodzinshkii M.I. Apparatura vysokotochnogo pozitsionionirovaniya po signalam global’nykh navigatsionnykh system. Vysokotochnye antenny. Spetsial’nye metody povysheniya tochnosti pozitsionirovaniya (Apparatus for high accuracy positioning signals of global navigation systems. High-precision antennas. Special methods to improve the positioning accuracy), Moscow, MAI, 2010, 386 p.
  8. Nikitin D.P. Telekommunikatsii. 2012, no 6, pp. 8-33.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход