Additive manufacturing opportunity for aviation and aerospace technology development

Economics and management


Аuthors

Chumakov D. M.

Institute of World Economy and International Relations (IMEMO), 23, Profsoyuznaya Str., Moscow, GSP-7, 117997, Russia

e-mail: chumakov.work@mail.ru

Abstract

The article analyzes the actual development trends of Additive Manufacturing (AM), applied in the aerospace industry in the United States (US) and Europe.

Ongoing studies on the analysis of AM-technologies are of a generalized nature of popular science, so this paper attempts not only to structure the data obtained by the application in the aviation and aerospace industry (which is the target area of civil and military equipment), but also to give economic assessment of the application of developments. The research materials are selected to demonstrate the difference between AM-technologies and the traditional processing techniques, as well as to point out the features and specifications of parts, components and assemblies produced by various technological methods.

Details and statistics obtained in the course of the study show that in recent years the scope of AM-technologies has become quite important. Due to technological advances and economic benefits of their use, its utilization has become the best indicator of the innovative development of progressively developing countries. Strategically, it’s necessary to track the emergence of technologies and developments in the world of theoretical and practical understanding of the functioning of innovation. US and European countries are leading in the development of new technologies. The study of the results of their work will give more data to support the need for the introduction of
AM-technologies and develop its own database of equipment, construction materials and products in the Russian industry.

The introduction of AM-technologies has not yet received any adequate attention from the Russian government. Scientific studies are still at a nascent stage and have no systematic approach to the study of AM-technologies. In this direction, foreign development have arrived ahead of the domestic one, besides the studies of scientific nature, an increasing number of techniques are being implemented into production. Therefore, it is advisable to use international experience of creating and operating AM-technologies in industrial sectors such as satellite and engine manufacturing to optimize the production of high-tech counterparts in the Russian aviation and aerospace industry.

Keywords:

additive manufacturing, 3D printer, aerospace industry, aero engine building, aviation and spacecraft

References

  1. Spravka o razvitii additivnykh proizvodstvennykh tekhnologii v Velikobritanii. Torgovoe predstavitel’stvo Rossii v Velikobritanii, http://prom.tularegion.ru/netcat_files/7645/9712/h_8ef5b02124b06204264e9a6a6ac00b0a
  2. Collins F., ’’Wohlers report 2014 uncovers annual growth of 34.9% for 3D Printing and Additive Manufacturing industry’’, available at: www.wohlersassociates.com, May 1, 2014.
  3. Additive manufacturing: opportunities and constraints, Royal Academy of Engineering, May 23, 2013, 5 p.
  4. Wohlers report 2013: Additive Manudacturing and 3D Printing state of the industry (executive summary), Wohlers Associates, Inc.
  5. Dr. Quarshie R., MacLachlan S., Dr. Reeves P., Dr. Whittaker D., Blake R., Shaping our national competency in additive manufacturing, UK AM SIG, September 27, 2012, 19 p.
  6. Michael Molitch-Hou, ’’AM to Enhance GE Stock?’’, available at: www.3dprintingindustry.com, August 29, 2013.
  7. Interview with Prabhjot Singh of the GE Additive Manufacturing Lab on using 3D Printing in manufacturing, available at: www.voxelfab.com, July 19, 2013.
  8. Dr. Quarshie R., MacLachlan S., Dr. Reeves P., Dr. Whittaker D., Blake R., Shaping our national competency in additive manufacturing, UK AM SIG, September, 2012, pp. 8-9.
  9. Zhang Shichen, Location Analysis of 3D Printer Manufacturing Industry, Columbia University, May 2014, pp. 35-36.
  10. Kauper J., ’’SLM Solutions vor dem Börsengang: 3D-Druck made in Germany’’, available at: www.deraktionaer.de, May 8, 2014.
  11. Selektivnoe lazernoe spekanie, available at: www.foto-business.ru.
  12. NASA tests limits of 3-D printing with powerful rocket engine check, available at: www.nasa.gov, August 27, 2013.
  13. Hot-fire tests show 3-D printed rocket parts rival traditionally manufactured parts, available at: www.nasa.gov, July 24, 2013.
  14. Shane Taylor, ’’SpaceX uses 3D printing to reach for the stars’’,available at: www.3dprintingindustry.com, June 3, 2014.
  15. Michael Molitch-Hou, ’’Can 3D printed jet engine parts save us from global warming?’’, available at: www.3dprintingindustry.com, May 31, 2013.
  16. Aerospace: advanced manufacturing process by EOS optimizes satellite technology, available at: www.eos.info.
  17. Debra Werner, ’’Additive Manufacturing Reaching Critical Mass’’, available at: www.spacenews.com, May 26, 2014.
  18. Britaniya reshila sozdat’ gosudarstvennyi tsentr 3D-pechati, available at: www.vz.ru, January 16, 2014.
  19. «Rossiiskaya gazeta», available at: www.rg.ru, 14 May 2014.
  20. I chtets, i zhnets’’, available at: www.lenta.ru, July 08, 2014.
  21. Michael Molitch-Hou, ’’After impressive emergency landing, Harrier Jet requires tender 3D printed care’’, available at: www.3dprintingindustry.com, August 23, 2014.
  22. Aerospace, Stratasys Ltd., available at: www.stratasys.com.
  23. Brendan McGarry, ’’BAE brings 3-D printing to warplanes’’, available at: www.defensetech.org, July 18, 2014.
  24. Bird’s eye view, Stratasys Ltd., available at: www.stratasys.com.
  25. Lockheed Martin unveils Samarai flyer at unmanned vehicle conference, Lockheed Martin news, available at: www.lockheedmartin.com, August 16, 2011.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход