Combined numerical and experimental investigation of the deformed state and buckling of the meshed cylindrical shell subjected to the axial compression

Dynamics, strength of machines, instruments and equipment


Аuthors

Nushtaev D. V.1*, Zhavoronok S. I.2, Klyshnikov K. Y.3, Ovcharenko E. A.3

1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. Institute of Applied Mechanics of Russian Academy of Science, IPRIM RAS, 7, Leningradskiy Prospekt, Moscow, 125040, Russia
3. Institute of Complex Problems of Cardiac and Vascular Diseases of Siberian Branch of Russian Academy of Medical Sciences, 6, Sosnovy Bulvar, Kemerovo,650002, Russia

*e-mail: nyshtaev.vfb@rambler.ru

Abstract

A cylindrical shell of meshed structure with small axial and radial global stiffness is investigated both numerically and experimentally. The pre-buckling deformed state, the loss of the global stability of the equilibrium state with a straight shell’s axe, and the post-buckling state are studied. The experimental measurement correspond to the axial kinematic loading of the shell with one fixed end and other end moving with the fixed small velocity, so that any dynamic effect can be neglected. The deformation pattern is constructed on the groundwork of the performed tests and plotted in the frame «axial deformation — axial force». A critical force corresponding to the loss of the global stability of the initial equilibrium state of the shell is found as well as the ultimate bearing capacity of the meshed structure loaded by the axial force.

The test data are used to validate the finite element model of the meshed shell that is used as a basis of numerical simulation of the buckling and the post-buckling state. The finite element modeling is performed for both linearized and fully nonlinear problem’s statement accounting the plasticity of the shell material, the non-steady contact interaction of the cells of the meshed structure during the axial compression, and the effect of the dry friction on the global bearing capacity of the structure. The effects of all the mentioned nonlinearities are investigated, and the three-dimensional stress-strain state of the meshed structure is studied; the area of plastic flow are found. The deformation pattern corresponding to these numerical results is constructed and compared with the experimental measured one. Using the obtained results the numerical model is improved, the friction coefficient is adjusted, and finally the good correlation of the test data and the numerical simulation is obtained. On the groundwork of these results the methodology of the numerical simulation of the buckling and post-buckling of meshed shells with small axial and radial rigidities is proposed.

Using this methodology the numerical simulation of the meshed shell made from the titanium nickelide is performed. The buckling and the post-buckling state of the shell are simulated on the basis of the model of the superelasticity of the titanium nickelide. The area of the superelastic behavior are found. The deformation pattern is constructed on the groundwork of the numerical simulation results and plotted in the frame «axial deformation — axial force».

The obtained results as well as the proposed methodology of the finite element simulation of the mechanical behavior of meshed shells during the post-buckling deformation accounting the effect of the dry friction forces in the local contact area of touching cells can be used for the computation of special elements of power plants of aerospace technic as well as for the elements of the surgical technic like the coronary stents.

Keywords:

cylindrical shell, meshed structure, plasticity, phase and structure transforms, deformed state, contact interaction, dry friction, buckling, finite element method

References

  1. Pschenichnov G.I. Teoria tonkikh uprugikh setchatykh obolochek I plastin (Theory of thin-walled meshed shells and plates), Moscow, Nauka, 1982, 352 p.

  2. Likhachev V.A., Kuzmin S.L., Kamentseva Z.P. Effekt pamiati formy (The shape memory effect), Leningrad, LGU, 1987, 216 p.

  3. Auricchio F., Taylor R.L., Lubliner J. Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior. Computer methods in applied mechanics and engineering. 1997. Vol. 146. P. 281 — 312.

  4. Craig L.B. Open Stent Design: Design and analysis of self expanding cardiovascular stents. — CreateSpace Independent Publishing Platform, 2012. — 94 P.

  5. Dumoulin C., Cochelin B. Mechanical behavior modelling of balloon-expandable stents. Journal of Biomechanics. 2000. No. 33. С. 1461–1470.

  6. .Kim J.H., Kang T.J., Yu W.R. Mechanical Modeling of Self-Expandable Stent Fabricated Using Braiding Technology. Journal of Biomechanics. 2008. Vol. 41, no. 15. P. 3202–3212.

  7. Smouse H.B., Nikanorov A., LaFlash D. Biomechanical forces in the femoropopliteal arterial segment. What happens during extremity movement and what is the effect on stenting. Endovascular Today. 2005. no. 4. P. 60 — 66.

  8. Scheinert D., Scheinert S. Sax J. Prevalence and clinical impact of stent fractures after femoropopliteal stenting. Journal of the American College of Cardiology. 2005. no. 45. P. 312 — 315.

  9. Duda S.H., Wiskirchen J., Tepe G. Physical properties of endovascular stents: an experimental comparison. Journal of Vascular & Interventional Radiology. 2000. no. 11. P. 645 — 654.

  10. Ryzhov S.A. SAPR and Graphica. 2003. no.1. URL: № 1: http://www.sapr.ru/article.aspx?id=6736&iid=275

  11. CO-alloy L-605 tubing for surgical implants. http://www.euroflex.de/ (20.05.2015).

  12. Belytschko T., Bindeman L.P. Assumed strain stabilization of the eight node hexahedral element. Computer Methods in Applied Mechanics and Engineering. 1993. Vol. 105. P. 225–260.

  13. Belytschko T., Lin J.I., Tsay C.S. Explicit algorithms for the nonlinear dynamics of shells. Computer Methods in Applied Mechanics and Engineering. 1984. Vol. 43. P. 251–276.

  14. Abaqus User Manual: Abaqus Theory Guide. Version 6.14. USA.: Dassault Systemes Simulia Corp., 2014.

  15. Zahedmanesh H., Kelly D., Lally C. Simulation of a balloon expandable stent in a realistic coronary artery. Determination of the optimum modeling strategy // Journal of Biomechanics. 2010. Vol. 43. P. 2126 — 2132.

  16. Vulovic S., Zivkovic M., Grujovic N. Contact Problems Based on the Penalty Method // Scientific Technical Review. 2008. Vol. 63. No.3-4. 2126 — 2132.

  17. Zhong Z.H. Contact Problems with Friction // Proceedings of Numiform. 1989. Vol. 89. P. 599–606.

  18. Auricchio F., Taylor R.L., Lubliner J. Shape-memory alloys: modelling and numerical simulations of the finite-strain superelastic behavior. Computer Methods in Applied Mechanics and Engineering. 1997. Vol. 143. P. 175 — 194.

  19. Nushtaev D.V., Zhavoronok S.I. Trudy mezhdunarodnogo foruma «Inzhenernye sistemy». Moscow, 15-16.04.2011, URL: http://www.tesis.com.ru/infocenter/downloads/abaqus/abaqus_es11_tes.pdf


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход