Geometric patterns of external antennas layout of solar spacecraft

CAD systems


Аuthors

Kyi M. H.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

e-mail: kyiminhan50@gmail.com

Abstract

The aim of the study is the geometric modelling of solar illumination on board the spacecraft or their position on the surface (or in the world, such as in the lunar settlements). At the same time explores the issues of their mutual orientation and shading at a given specific geometry of their arrangement. Addressing these issues should serve as a basis for the development of software and software of the automation system placement and orientation of the solar panels and hubs on the ground and on the spacecraft. The purpose of research — to assess the mutual shading of solar panels, both among themselves and with other entities (such as the space station).

The article shows the physical and mathematical formulation of the problem of optimization of placing solar panels in space or on the ground. The article shows that the mathematical formulation of this problem is seen as an optimization problem in mathematical programming, aimed at maximizing the use of these high-power sources in outer space stations and space colonies. The method of decision — geometric modelling space station and solar panels with a specific orientation. As a method of modelling the receptor used geometric model is sampled as the battery accommodation space, and the space station itself.

Based on the geometric model developed by the receptor software system created in C #, which allows to simulate the effective area of the solar concentrators. At the same time it developed a graphical shell, allowing to see the numerical value of the results. When the software package after you enter information about the geometrical dimensions of the station and solar panels (in parametric form), it is converted parametric geometric model in the matrix, and begins scanning stratified sections. Each layer is formed 3D matrix 2D matrix is like a slice of 3D matrix for a given distance. Each section (cut) receptor matrix calculates the area of this section of solar panels, efficient (cumulative) cross-sectional area of solar cells and the accumulated area of the cross sections of the housing space station. This accumulated area I is an effective working area of solar spacecraft given geometry and orientation relative to the sun, taking into account all types of solar shading.

The field of application of the results is to automate the design of spacecraft and geo-electric stations on the ground or space colonies. To develop mathematical and software allows you to estimate the effective area of the solar panels in the specific design parameters of the spacecraft and its orientation relative to the flow of solar energy.

Keywords:

design automation, solar power, solar panels, spacecraft, heliostat, orientation, shading, receptor geometric models

References

  1. Vissarionov V.I., Deryugina G.V. Solnechnaya energetika (Solar power), Moscow, Izd. dom MEI, 1996, 276 p.

  2. Mkhitaryan E.M. Energetika netraditsionnykh i vozobnovlyaemykh istochnikov (Energy alternative and renewable istochnikov), Kiev, Naukova dumka, 1999, 321 p.

  3. Grilikhes V.A. Solnechnye kosmicheskie energostantsii (Solar cosmic power plant), Leningad, Izd-vo Nauka, 1986, 286 p.

  4. Kheifets A.L Vestnik UGTU-UPI, 2004, issue, 7, no. 11 (41), pp. 211-214.

  5. Kheifets A.L. Vestnik Yuzhno-Ural’skogo universiteta. Stroitel’stvo i arkhitektura, issue. 14 (86), 2007, pp. 51-54.

  6. Shteinberg A.Ya. Raschet insolyatsii zdanii (Calculation of the buildings insolation). Kiev, Budivel’nik, 1975, 120 p.

  7. Gusev N.M. Estestvennoe osveshchenie zdanii (Natural lighting of buildings), Moscow, Gosstroiizdat, 1961, 218 p.

  8. Zozulevich D.M. Mashinnaya grafika v avtomatizirovannom proektirovanii (Computer graphics in computer-aided design), Moscow, Mashinostroenie, 1976, 240 p.

  9. Gerasimenko E.P. Zozulevich D.M. Metody formirovaniya trekhmernykh retseptornykh matrits na EVM. Vychislitel’naya tekhnika v mashinostroenii (Methods of formation of three-dimensional arrays of receptor on the computer. Computer Science in Mechanical Engineering), Minsk, ITK AN BSSR, 1971, pp. 24 — 31.

  10. Medvedskii A.L., Rabinskii L.N., Kurbatov A.S. Prikladnaya geometriya, issue 11, no. 22 (2009), pp. 79-87.

  11. Voloshin V.V. Avtomatizatsiya proektirovaniya letatel’nykh apparatov (Computer-aided design of aircraft), Moscow, Mashinostroenie, 1991, 256 p.

  12. Markin L.V. Prikladnaya geometriya, inzhenernaya grafika, komp’yuternyi dizain, no. 1 (11), 2007, pp. 9-18.

  13. Osin M.I. Metody avtomatizirovannogo proektirovaniya letatel’nykh apparatov (Methods of computer-aided design of aircraft), Moscow, Mashinostroenie, 1984, 168 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход