Computer simulation of plasmodynamic processes in the torch of capillary discharge

Fluid, gas and plasma mechanics


Аuthors

Kuzenov V. V.*, Ryzhkov S. V.**, Gavrilova A. Y.***, Skorokhod E. P.****

Bauman Moscow State Technical University, MSTU, 5, bldg. 1, 2-nd Baumanskaya str., Moscow, 105005, Russia

*e-mail: kuzenov@ipmnet.ru
**e-mail: svryzhkov@gmail.com
***e-mail: gavrilovaann@mail.ru
****e-mail: e.p.skorohod@mail.ru

Abstract

Modern space programs give specialized practical tasks to the developers in order to develop new engines and their improvement.

Capillary pulse discharge with an evaporating wall of the channel is a relatively simple way to obtain plasma. It is known that this type of discharge is characterized by a long, relatively stable structure of a pulsed plasma stream in the atmosphere. A capillary pulse discharge is a generator of plasma streams, which is an inter-electrode ins ert made of a dielectric cylinder with an axial bore that is used as a main channel of capillary discharge, electrodes and the body.

As part of the radiating plasma dynamics, taking into consideration the radiation transfer, problem is set plasma and gas-dynamic processes in the flame of a capillary discharge with an electrode vaporizing under the assumption that the brightness temperature and the temperature of the outflowing plasma equal to each other.

Specific calculations with plasma-forming substance performed for Al flooded space (air under normal conditions), the timing of the maximum discharge current is equal to tmax = 25 ms. The val ue of the total energy stored in the buffer storage, was 2,7 kJ, the channel diameter capillary discharge is 10 mm.

The numerical solution of the system developed in accordance with the non-stationary two-dimensional radiation magnetogasdynamic model, which is based on the method of splitting into physical processes and spatial directions.

The spatial distribution of temperature, pressure and density shown in a quasi-stationary part of the jet, on time t = 94,6 s.

The results show that at time of about 100 ms brightness temperatures plummet from 10 to 3 kK and then relatively little change over time.

In this paper the results are compared with other calculations and experimental work for the high-current discharge channels [15, 18].

In [15] jet diameter d0 = 0,2 cm, the pressure on the cut p0 = 143 atm, the axial velocity of the plasma u0 = 10,8 km/c, radial velocity v0 = 0, the plasma density ρ0 = 1,89 ∙ 10-4 g/cm3, the density of radiant energy flux S0 = 23,9 mW/cm2; environmental parameters were taken to be: p = 31,6 bar, ρ = 1,52 ∙ 10-2 g / cm3, T = 2,59 ∙ 10-2 eV.

In [18] calculations Underexpanded plasma jet made for the channel diameter d = 0,2 cm. In the jet nozzle exit temperature T = 3.5 eV, pressure p = 70,8 atm, the density ρ = 1,29 ∙ 10-4 g/cm3, velocity u =10 km/c, the Mach number M = 1,24. Parameters of the ambient air following: p = 1,63 atm, ρ = 1,29 ∙ 10-3 g / cm3, T = 0,038 eV.

In [15, 18] Mach disk locations after the jet to a quasi-stationary mode does not correspond experiments [8-10]. However, calculations of how [15] and [18] give the same values of Mach disk position.

Authors of the experimental work [10] observed two bright glow: have cut the capillary and in the Mach disc, which means an increase of temperature in these areas. This is consistent with the calculations of this study and [15].

Brightness temperature jet, measured experimentally, equal to 23,5 kK [8-10]. Calculated brightness temperature jet differs by more than 10 kK.

Numerical investigations of pulse jet flowing through the slice rather «wide», more than three millimeters channels, show that near the boundaries of the jet formed unsteady vortex structures.

The work was performed in the framework of the program of the Presidium of Russian Academy of Sciences and the Russian Ministry of Education (Project No. 13.79.2014/K).

Keywords:

plasma engines, radiation plasma dynamic, capillary discharge plasma jet, the computer system ASTEROID

References

  1. Fizicheskaya entsiklopediya (Physical encyclopedia), Moscow, Bol’shaya Rossiiskaya entsiklopediya, 1998, vol. 5, 691 p.

  2. Vasin A.I., Koroteev A.S., Lovtsov A.S., Muravlev V.A., Shagaida A.A., Shutov V.N. Elektronnyi zhurnal «Trudy MAI», 2012, no. 60, available at: http://www.mai.ru/science/trudy/published.php?ID=35413 (accessed 10.12.2012).

  3. Elektronnyi zhurnal «Trudy MAI», 2014, no. 74, available at: http://www.mai.ru/science/trudy/published.php?ID=49034 (accessed 25.04.2014).

  4. Belov S.N., Zhilin A.N., Ogurtsova N.N., Podmoshenskii I.V. Teplofizika Vysokikh Temperatur, 1978, vol. 16, no. 3, pp. 473-477.

  5. Bobrova N.A., Bulanov S.V., Potsoli R., Razinkova T.L., Sasorov P.V., Farina D. Fizika plazmy, 1998, vol. 24, no. 1, pp. 3-8.

  6. Borisov E.K., Skorokhod E.P., Sharikov I.V. Izvestiya RAN. Mekhanika zhidkosti i gaza, Moscow, 1997, no. 1, pp. 181-188.

  7. Luk’yanov G.A. Sverkhzvukovye strui plazmy (Supersonic jet plasma), Moscow, Mashinostroenie, 1985, 274 p.

  8. Smirnov V.L. Issledovanie neideal’noi plazmy v usloviyakh kapillyarnogo razryada (The study strongly coupled plasma in a capillary discharge), Doctor’s thesis, Leningrad, GOI, 1979, 209 p.

  9. Sharikov I.V. Struktura eroziinoi plazmennoi strui sil’notochnogo razryada v kapillyare (The structure of the erosive plasma jet of the discharge in the capillary), Doctor’s thesis, Moscow, MAI, 2003, 153 p.

  10. Borisov E.K. Opticheskie svoistva tyazhelykh metallov sil’notochnogo razryada i sverkhzvukovoi eroziinoi plazmennoi strui (The optical properties of high-current discharge of heavy metals and erosive supersonic plasma jet), Doctor’s thesis, Moscow, MAI, 1995, 134 р.

  11. Rozanov V.B. Teplofizika Vysokikh Temperatur, 1970, vol. 8, no. 5, p. 951.

  12. Ogurtsova N.N., Podmoshenskii I.V, Rogovtsev P.N. Teplofizika Vysokikh Temperatur, 1971, vol. 9, no. 3, pp. 468-471.

  13. Bondarev B.V., Muravenko V.G., Shirokov M.F. Teplofizika Vysokikh Temperatur, 1977, vol. 15, no 3, pp. 465-470.

  14. Belov S.N. Zhurnal prikladnoi spektroskopii, 1978, vol. 28, no. 4, pp. 605-607.

  15. Okunev V.E., Pavlyukevich N.V., Romanov G.S., Smetannikov A.S. Chislennoe modelirovanie dinamiki eroziinoi plazmy moshchnykh elektricheskikh razryadov (Numerical simulation of the dynamics of erosive plasma powerful electric discharges), Minsk, Institut teplo i massoobmena im. A.V.Lykova, 1984, 32 p.

  16. Abramovich G.N. Prikladnaya gazovaya dinamika (Applied gas dynamics), Moscow, Nauka, 1991, 600 p.

  17. Min’ko L.Ya. Poluchenie i issledovanie impul’snykh plazmennykh potokov (Preparation and research of pulse plasma flows), Minsk, Nauka i tekhnika, 1970, 184 p.

  18. Stepanov K.L., Ershov-Borisov E.A., Okunev V.E. Radiatsionnyi perenos energii v aksial’no simmetrichnykh elektricheskikh razryadakh i plazmennykh struyakh (Radiative energy transfer in an axially symmetric electric discharges and plasma jets), Minsk, Institut teplo i massoobmena im. A.V.Lykova, 1999, 20 p.

  19. Kuzenov V.V., Ryzhkov S.V. Matematicheskaja model’ vzaimodejstvija lazernyh puchkov vysokoj jenergii impul’sa s plazmennoj mishen’ju, nahodjashhejsja v zatravochnom magnitnom pole (The mathematical model of the interaction of laser beams of high-energy plasma pulse with a target, located in the seed magnetic field), Moscow, IPMech RAS, 2010, 56 p.

  20. Kuzenov V.V., Ryzhkov S.V. Numerical modeling of magnetized plasma compressed by the laser beams and plasma jets, Problems of Atomic Science and Technology, 2013, no. 1 (83), pp. 12–14.

  21. Surzhikov S.T. Computing system for solving radiative gasdynamic problems of entry and re-entry space vehicles. Proceedings of the 1st International Workshop on Radiation of High Temperature Gases in Atmospheric Entry, 2003, ESA-533, pp. 111–118.

  22. Surzhikov S.T. Teplovoe izluchenie gazov i plazmy (Thermal emission gases and plasma), Moscow, MGTU im N.E. Baumana, 2004, 543 p.

  23. Kuzenov V.V., Ryzhkov S.V., Shumaev V.V. Prikladnaya fizika, 2014, no. 3, p. 22–25.

  24. Kuzenov V.V., Ryzhkov S.V., Shumaev V.V. Fiziko-khimicheskaya kinetika v gazovoi dinamike, 2014, vol. 15, no. 5, available at: http://chemphys.edu.ru/issues/2014-15-5/articles/253/ (accessed 28.03.15).

  25. Kuzenov V.V., Lebo A.I., Lebo I.G., Ryzhkov S.V. Fiziko-matematicheskie modeli i metody rascheta vozdeistviya moshchnykh lazernykh i plazmennykh impul’sov na kondensirovannye i gazovye sredy (Physical and mathematical models and methods of calculation of the impact of high-power laser and plasma pulses on condensed and gas environments), Moscow, BMSTU, 2015, 327 p.

  26. Kuzenov V.V., Ryzhkov S.V. Problems of Atomic Science and Technology, 2013, no. 4 (86), pp. 103-107.

  27. Zel’dovich Ya.B., Raizer Yu.P. Fizika udarnykh voln i vysokotemperaturnykh yavlenii gidrodinamicheskikh yavlenii (Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena), Moscow, Nauka, 1966, 688 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход