Analysis of signal-to-noise ratio estimation algorithms based on inphase and quadrature components of the received signal

Radio engineering


Аuthors

Serkin F. B.1*, Vazhenin N. A.**, Veytsel V. V.2

1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. Organization « Topcon Positioning Systems», 7, Derbenevskaya naberezhnaya, building 22, Moscow, 115114, Russia

*e-mail: serkinfb@list.ru
**e-mail: N.Vazhenin@mai.ru

Abstract

Signal-to-noise ratio estimation plays significant role in state of art communication, navigation and location systems. Signal-to-noise ratio affect performance of these systems and its estimation can be used to control systems and adopt its characteristics for various conditions. The paper presents a comparative analysis of various signal-to-noise estimation algorithms. These algorithms based on quadrature components of the received signal. Considered the quality of operation of these algorithms in two cases: when the phase synchronization has zero error, and when there is a various fixed error. All considered algorithms can be divided into two categories: based on in-phase and quadrature components itself and based on received signal vector length. Analysis performed for channel with additive white Gaussian noise and binary phase shift keying modulation. MATLAB/Simulink software used to simulate realizations of algorithms in described specific environment. Algorithms accuracy analysis obtained for 10% maximum error. The results of the work can be concluded as follows: all considered algorithms have estimation errors for signal-to-noise ratio of less than 10 dB; the minimum level of these errors can be achieved with algorithm (2.31); algorithms, that are effective in the presence of phase synchronization error, and algorithms, that are effective in the case of zero phase synchronization error, can be selected; algorithms based on received signal vector length are resistant to phase synchronization errors, but they have highest errors in less than 10 dB area.

Keywords:

signal-to-noise estimation, simulation, MATLAB/Simulink

References

  1. Cioffi J.M., Chapters for Classic EE379 Series Courses, Chapter 1, Stanford University, Winter Quarter 2007-2008, http://web.stanford.edu/group/cioffi/book/

  2. Levin B.R. Teoriya sluchainykh protsessov i ee primenenie v radiotekhnike (Theory of random processes and its application to radio), Sovetskoe Radio, Moscow, 1960, 496 p.

  3. D. R. Pauluzzi, N. C. Beaulieu, A comparison of SNR estimation techniques for the AWGN channel, IEEE Transactions on Communications, VOL. 48, NO. 10, October 2000, p.1681-1691.

  4. Harris F., Dick C., SNR estimation techniques for low SNR signals, 15th International Symposium on Wireless Personal Multimedia Communications (WPMC), Taipei, Taiwan, 2012, p.276-280.

  5. Gonorovskii I.S. Radiotekhnicheskie tsepi i signaly (Radio circuits and signals), Moscow, Radio i svyaz’, 1986, 512 p.

  6. Sklyar B. Tsifrovaya svyaz’. Teoreticheskie osnovy i prakticheskoe primenenie (Digital Communications: Fundamentals and Applications), Moscow, Williams, 2003, 1104 p.

  7. Benedict T. R., Soong T.T., The Joint Estimation of Signal and Noise from the Sum Envelope, IEEE Transactions on Information Theory, Vol. IT-13, No. 3, July 1967, p.447-454.

  8. Matzner R., Englberger F., An SNR Estimation Algorithm Using Fourth-Order Moments, Institute for Commun. Engineering ET3, Federal Armed Forces University Munich, 85577 Neubiberg, Germany, IEEE, 1994.

  9. Trachanas I., Fliege N.J., A Novel Phase Based SNR Estimation Method for Constant Modulus Constellations, 3rd International Symposium on Communications, Control and Signal Processing, 2008, ISCCSP 2008, 12-14 March, p. 1179-1183.

  10. Ijaz A., Awoseyila A.B., B.G. Evans, Improved SNR estimation for BPSK and QPSK signals, Electronic Letters 30th July 2009, Vol. 45, No. 16, p.858-859.

  11. Wiesel A., Goldberg J., Messer H., Data-aided signal-to-noise-ratio estimation in time selective fading channels, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2002, Orlando, FL, USA, pages III-2197 — III-2200.

  12. Sovetov B. Y. Yakovlev S.A. Modelirovanie sistem (Modelling systems), Moscow, Vysshaya shkola, 1985, 271 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход