Searching of safe capabilities of effectively defeats the aim

System analysis, control and data processing


Аuthors

Pegachkova E. A.1*, Kondarattsev V. L.2**

1. ,
2. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: pegachkova@mail.ru
**e-mail: resi2311@mail.ru

Abstract

Consider the problem the problem of searching for optimal from the point of safety of bomber in the bombing on a protected ground aim command vector on the basis of constructing a mathematical model of a two-step algorithm of making a decision is considered. For this the brief substantiation of the choice of a stochastic model for the first step of the algorithm is given, the problem of constructing a payoff function for the second step is considered in the work. A program with test examples demonstrating the operation of the algorithm with real data set is made on the basis of the primary model. Due to the specificity of such systems the question is broached of connection of continuous and discrete systems which has raised a large number of important problems in such priority area for the country as aviation technologies. As a result of the construction of a formal model, a part of the software package was written, which is responsible for finding of the optimal probability of safe target hit. Based on the input of instant tactical situation, the dynamics of flight and data on the impact zone, a probabilistic assessment of the effectiveness of getting into this area is built, as well as the assessment of the effectiveness of the scatter fragments based on preselected mechanical model of bomb explosions. The program builds a possible strategy by combining all the defined actions of releasing the bomb. The payoff function, which is basically a preference relation on fuzzy sets, sets encourage or punitive terms for each situation on a set of pairs of strategies and combinations of all set in the program of discrete and continuous parameters that are sampled for the ultimate goal. As a result, the optimal strategy, if it exists, is displayed for recommendations of dropping the bomb. Except for the specific settings reset, three main situations are considered: reset is not recommended due to the low probability of falling into the impact zone; reset is not recommended because of the risk of the process; reset is recommended, and reset parameters are available to the pilot. Note that most of the research carried out in this paper is devoted to the building of preference relationships for the construction of the payoff function. As the main results can be noted following things. After the analysis of «Bomber — Air Defense» interaction system a primary decision-making model for instant tactical situation was founded, as well as the software package piece responsible for the search of the optimal strategy.

Keywords:

onboard software, geometric probability, effective engagement

References

  1. Krasnov A.M. Elektronnyi zhurnal «Trudy MAI», 2011, no. 49: https://www.mai.ru/science/trudy/eng/published.php?ID=27946

  2. Krasnov A.M. Elektronnyi zhurnal «Trudy MAI», 2012, no.61: https://www.mai.ru/science/trudy/eng/published.php?ID=35640

  3. Pugachev V.S. Teoriya veroyatnostei i matematicheskaya statistika (Theory of probability and mathematical statistics), Moscow, Nauka, 2002, 496 p.

  4. Petrosyan L.A., Zenkevich N.A. Shevkoplyas E.V. Teoriya igr (Game theory), SPb., BXB-Peterburg, 2012, 432 p.

  5. Sekei G. Paradoksy v teorii veroyatnosti i matematicheskoi statistiki ( Paradoxes in the theory of probability and mathematical statistics), Moscow, Mir, 1990, 249 p.

  6. Panteleev A.V., Letova T.A. Metody optimizatsii v primerakh i zadachakh (Optimization methods in examples and problems), Moscow, Vysshaya shkola, 2005, 544 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2021 by MAI

Вход