Computer simulation of plasmodynamic processes pulse jets capillary discharge

Fluid, gas and plasma mechanics


Аuthors

Kuzenov V. V.*, Ryzhkov S. V.**, Skorokhod E. P.***

Bauman Moscow State Technical University, MSTU, 5, bldg. 1, 2-nd Baumanskaya str., Moscow, 105005, Russia

*e-mail: kuzenov@ipmnet.ru
**e-mail: svryzhkov@gmail.com
***e-mail: e.p.skorohod@mail.ru

Abstract

Modern space programs set specialized practical problems to the developers while designing new engines and their upgrading.

Capillary pulse discharge with an evaporating wall of the channel was described in [1].

As a part of the radiating plasma dynamics, taking into consideration the radiation transfer, the problem is set as follows: plasma and gas-dynamic processes in the flame of a capillary discharge with an electrode vaporizing under the assumption that the brightness temperature and the temperature of the outflowing plasma are equal to each other. The results of calculations are given in [1].

Numerical studies of pulsejet, flowing through rather «wide» slice, the channels of more than three millimeters, revealed that the jet formed unsteady vortex structures near the boundaries.

It presents the spatial distribution of temperature and pressure of the jet, formed by three channels, for times: t = 18.5 ms, t = 41.6 ms, t = 94.6 s.

The impact of the magnetic field is considered. For a single channel capillary discharge with an evaporating electrode it demostrates the distributions of temperature in the flame of a capillary discharge when applied to a stream of the external magnetic field B = 1.58 Tl and B = 2.5 Tl, respectively.

The magnetic field affects the high temperature (near the axis) of the plasma jet and a wake vortex (toroidal vortex) in a triple configuration of the shock waves.

If the value of the magnetic pressure pmag= 25 atm, toroidal vortex
does not occur, and the longitudinal size of jet is approximately twice the
size of the jet without a magnetic field presence. Similarly, the maximum value
of the temperature obtained is 1.5–2 times greater than the temperature value obtained
by the calculation without the effect of the external magnetic field.

Keywords:

plasma engines, radiation plasma dynamic, capillary discharge plasma jet, the computer system ASTEROID

References

  1. Kuzenov V.V., Ryzhkov S.V., Gavrilova A.Yu., Skorokhod E.P. Elektronnyi zhurnal «Trudy MAI», 2015, no. 83. available at: http://www.mai.ru/scien:ce/trudy/published.php?ID=61818 (accessed 05.10.2015).

  2. Cherkasova M.V. Tezisy dokladov XV Mezhdunarodnoy konferencii po vychislitel’noi mekhanike i sovremennym prikladnym programmnym sistemam (VMSPPS—2007), Alushta, 2007, p. 505.

  3. De Tata M., Albertony R., Rossetti P., Paganucci F., Cherkasova M., Obukhov V. 32th Int. Electric Propulsion Conf. Germany, 2011, p. 108.

  4. M. Cherkasova, V. Obukhov, V. Riaby, S. Semenikhin, M. De Tata, R. Albertony, P. Rossetti, F. Paganucci, M. Andrenucci SP2010_1841635, Space Propulsion 2010, 3-6 May, San Sebastian, Spain.

  5. Vaulin E.P., Kirushkina M.V., Obukhov V.A., Scortecci F. Proceedings of the 32nd Joint Propulsion Conf., USA, AIAA paper, 1996, no. 96, p. 3184.

  6. R. Albertoni, M. Andrenucci, M. Cherkasova, V. Obukhov , F. Paganucci, P. Rossetti, M. De Tata Experimental study of a Multichannel Hollow Cathode for High Power MPD Thrusters, JPC-2011-1027660.

  7. Bishaev A.M. Vychislitel’naya matematika i matematicheskaya fizika, 1993, vol. 33, no. 7, pp. 109-118.

  8. Kamrukov A.S., Kozlov N.P., XXVIII Zvenigorodskaya konferentsiya po fizike i UTS, 2001, pp. 230-231/

  9. Kamrukov A.S., Kozlov N.P. Sbornik nauchnykh trudov «IX Mezhdunarodnyi simpozium po radiatsionnoi plzmodinamike, Moscow, NITs «Inzhener», 2012, p. 89-97.

  10. Vazhenin N. A. Elektronnyi zhurnal «Trudy MAI», 2013, no. 69, available at: http://www.mai.ru/science/trudy/published.php?ID=43218 (accessed 10.10.2013)

  11. Avramenko R.F., Nikolaeva V.I., Poskacheeva L.P. Energoemkie plazmennye obrazovaniya, initsiiruemye erozionnym razryadom, Sbornik «Sharovaya molniya v laboratorii», Moscow, Khimiya, 1994, pp.15-55.

  12. Zel’dovich Ya.B., Raizer Yu.P. Fizika udarnykh voln i vysokotemperaturnykh yavlenii gidrodinamicheskikh yavlenii (Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena), Moscow, Nauka, 1966, 688 p.

  13. Ovsyannikov L.V. Lektsii po osnovam gazovoi dinamiki (The lectures on the basics of gas dynamics), Izhevsk, Institut komp’yuternykh issledovanii, 2003, 335 p.

  14. Dulov V.G., Luk’yanov G.A. Gazodinamika protsessov istecheniya, (Gas dynamics of processes expiration), Novosibirsk, Nauka, 1984, 235 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход