Universal Avionics Modular Controller Architecture Development
Computing and control systems elements and units
Аuthors
1*, 2**, 1***1. Integration center branch of the Irkut Corporation, 5, Aviazionny pereulok, Moscow, 125167, Russia
2. ,
*e-mail: dmitry.zaytsev@uac-ic.ru
**e-mail: evgeny.neretin@ic.irkut.com
***e-mail: anton.ramzaev@uac-ic.ru
Abstract
The paper describes high-performance hardware controller development. The designed device allows to implement FDAL—A aircraft function and provides reduce of the development and certification costs.
Designed controller consists of the unique hardware-only platform and set of hardware-only applications. Each of application implements specific algorithms so the whole device performs the assigned objectives.
The platform architecture based on the reflective memory concept. That means the of virtual common memory for all application, and specific strictly determined memory exchange algorithms.
Each application represents by hardware module performs the task exclusively assigned to it. The platform has ability to control some equal applications.
Designed controller architecture has the modular-system roots, that aims to excellent scalability and flexibility characteristics and allows to implement new functions without the existing functions implementation modification.
The controller development is divided to two independent tasks — platform and application development. After that the IMA integration in performed. As a certification approach the task-by-task certification method (as described in DO-297) is suggested.
Keywords:
Controller Architecture, Central avionics computer, integrated modular avionicsReferences
-
ARP4754. Aerospace Recommended Practice. Guidelines for Development of Civil Aircraft and Systems, Revision A. — The USA: SAE International. — December 2010. 115 p.
-
Catani L., Gabrielli E., Gatta M., Sabene M., Salamon A., Salina G. A general purpose reflective memory board for accelerator data acquisition and control system applications // IEEE Nuclear Science Symposium Conference Record. № 14-141. 2005. pp. 692-695.
-
Core Processing & Input/Output Module (CPIOM) for the MS-21 Program. Technical Proposal Specification. — Israel, Haifa: Elbit Systems—Aerospace. 2012. 98 p.
-
DO-297. Integrated Modular Avionics (IMA) Development. Guidance and Certification Considerations. — Washington, DC: RTCA, Inc. 2005. 137 p
-
MS-21 Program Integrated Modular Avionics System. CPIOM Specification. — EU: THALES Avionics. 2012. 97 p.
-
Primus® Epic, URL: https://aerospace.honeywell.com/products/integrated-avionics/primus-flight-decks/primus-epic, 2015.
-
Pro Line 21™ Integrated Avionics System, URL: https://www.rockwellcollins.com/Data/Products/Integrated_Systems/ Flight_Deck/Pro_Line_21_Integrated_Avionics_System.aspx, 2015.
-
Real Time Networking with Reflective Memory™. — The USA: GE Fanuc. 2007. 10 p.
-
Ageev V.M., Pavlova N.V. Pribornye kompleksy letatel’nykh apparatov i ikh proektirovanie (Avionics complexes and its design), Moscow, Mashinostroenie, 1990, 432 p.
-
Bogdanov A. ., Vasil’ev G. ., Vinogradov P.S., Egorov K.A., Zaichenko A.N., Koverninskii I.V., Petukhov V.I., Romanov A.N., Smirnov E.V., Utkin B.V., Fedosov E.A., Shukalov A.V. Patent RU 108868 U1, 27.09.2011.
-
Bortovaya tsentral’naya vychislitel’naya sistema (Onboard central processing system), URL: http://www.rpkb.ru/lines-of-business/electronic_direction/on-board-computers/onboard-central-compute..., 01.12.2015.
-
Buravlev A., Chel’diev M., Barybin A., Kostenko V., Tumakin D., Petrov G. Sovremennye tekhnologii avtomatizatsii. 2009, no. 3, pp. 72–82.
-
Dzhandzhgava G.I. Vestnik aviatsii i kosmonavtiki. 2001, no. 5, pp. 8–10.
-
Evgenov A.V. Aviakosmicheskoe priborostroenie. 2003, no 3, pp. 48–53.
-
Egorov, K. A., Itenberg, I. I., Koverninskii, I. V., Timchenko, A. P., Fedosov, E. A., Chuyanov, G. A. Patent RU 2413280 С1, 27.02.2011.
-
Efanov, V.N., Bodrunov, S.D. Mir avioniki. 2004, no. 5, pp. 20–28.
Download