Discrete models of geometric modelling layout aircraft equipment

CAD systems


Аuthors

Markin L. V.1*, Korn G. V.2**, Kyi M. H.1***, Ye W. T.1****

1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. University of Information Technologies, Radio Engineering and Electronics, 78, Vernadsky Prospekt, Moscow, 119454, Russia

*e-mail: markinl@list.ru
**e-mail: galkorn@yandex.ru
***e-mail: kyiminhan50@gmail.com
****e-mail: yewintun590@gmail.com

Abstract

The article discusses the layout automation products, high-density layout (especially aircraft equipment). Layout Automation is one of the most difficult tasks of design automation. Therefore, the aim of this study is the development of intelligent algorithms and automated layout relevant special mathematical and software.

The paper shows that with an abundance of computer-aided geometric models to describe the geometric shape of any complexity, their use in automated layout tasks, does not provide a solution to the problem the most dense placement. The mathematical formulation of the problem as a layout optimization problem, indicating its objective function, constraints and performance criteria. In this setting, the efficiency criterion adopted most dense arrangement of composable objects in a specific confined space.

An approach (using geometric models receptor), which is a sampling space for placing individual elements (receptors) having discrete values ​​of «0» or «1» depending on whether this receptor belongs to a specific object or not. This approach allows for the creation of geometric models of the automated layout pass from exhaustive search of accommodation composable objects to intelligent algorithms, the automated placement. This is due to a unique easy to determine cases of mutual intersection composable objects, both among themselves and with the prohibition.

The article shows the results of approaches and the use of geometric models of the receptor at the automated layout aircraft. In particular, we show their use to address such trivial tasks automated layout as void spaces, bodily tracing software service areas have arranged objects. The results of the study the accuracy and performance of the proposed methods. Simulation possible to estimate the CPU time and costs, which are also of the expected size increasing with decreasing d receptor and a corresponding increase in the accuracy of the model by a parabolic relationship between a few seconds to about 3 minutes. This means that the amount of the receptor, for example, 0.2 mm form submission error is 0.06 mm ± 0.18, which is sufficient for conceptual design stage is a reasonable compromise between the expected accuracy of the algorithm and the cost of computing resources for its implementation.

Application of the results — the creation of new methods and algorithms in the library automated layout methods. It is shown that the use of geometric models of receptor has both its advantages and its drawbacks, one of which is the need to block the conversion of geometric models’ parametric model ↔ receptor model "that brings some additional difficulties in the interpretation of the results of the automated layout. Rapid growth performance computing makes discrete receptor models more attractive and increasingly popular practice in the design of high-tech equipment. It is shown that the receptor geometric models provide sufficient accuracy and performance at the stage of conceptual design of aircraft. At the same time that there is considerable scope for reducing the computing power required and the implementation of receptor geometric models (for example, by the use of adaptive size of the receptor).

Keywords:

design automation, layout, geometric modeling, receptor geometric models, shape recognition, connecting trails, service area

References

  1. Semenkov O.I. Vvedenie v sistemy avtomatizatsii proektirovaniya (Introduction into automation system design), Minsk, Nauka i tekhnika, 1979, 85 p.

  2. Aved’yan A.B., Bibikov S.Yu., Markin L.V. Komponovka samoletov (The layout of the aircraft), Moscow, Izd-vo MAI, 2012, 296 p.

  3. Gerasimenko E.P., Zozulevich D.M. Minimizatsiya vychislitel’nogo protsessa pri reshenii geometricheskikh zadach s pomoshch’yu retseptornykh matrits (Minimization of the computational process for solving geometric tasks using receptor matrices), Minsk, ITK AN BSSR, 1970, pp. 26 — 40.

  4. Zozulevich D.M. Mashinnaya grafika v avtomatizirovannom proektirovanii (Computer graphics in computer-aided design), Moscow, Mashinostroenie, 1976, 240 p.

  5. Korn G.V. Metody formirovaniya retseptornykh geometricheskikh modelei i ikh primenenie pri reshenii inzhenerno-geometricheskikh zadach (Methods of formation of receptor geometric models and their application in solving engineering geometric problems). Abstract thesis, Moscow, MADI, 1990, 22 p.

  6. Situ Lin. Razrabotka metodov i geometricheskikh modelei analiza nezapolnennykh prostranstv v zadachakh razmeshcheniya (Development of methods and models of geometric analysis of blank spaces in the problems of accommodation). Abstract thesis, Moscow, MAI, 2011, 24 p.

  7. Gavrilov V.N. Avtomatizirovannaya komponovka pribornykh otsekov letatel’nykh apparatov. (Automated layout instrument compartments of aircraft), Moscow, Mashinostroenie, 1988, 136 p.

  8. Stoyan Yu.G., Gil’ N.I. Metody i algoritmy razmeshcheniya ploskikh geometricheskikh ob"ektov (Methods and algorithms for the placement of flat geometric objects), Kiev, Naukova dumka, 1976, 249 p.

  9. N’i N’i Khtun. Razrabotka i issledovanie retseptornykh geometricheskikh modelei telesnoi trassirovki (Development and research of geometric models of receptor bodily trace). Abstract thesis, Moscow, MAI, 2014, 26 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход