Thermal regime of solar probe considering hypervelocity dust particles impacts

Strength and thermal conditions of flying vehicles


Аuthors

Salosina M. O.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

e-mail: salosina.m@yandex.ru

Abstract

This article presents the analysis of effect of the hypervelocity dust impacts on the thermal state of the solar probe and the destruction of its thermal protection during the flight at close vicinity to the Sun. The relevance of this problem is caused by extremely high velocities of dust impacts on the structural components of the spacecraft, which are expected to be as high as 350 km/s depending on the perihelion distance; significant mission duration (~ 7 years) and greater values of cumulative particle density in comparison with the near-Earth environment. The main information about the density, composition and dynamics of dust particles at the close vicinity to the Sun is presented. In accordance with the described dust distribution model the cumulative density at different distances from the Sun and the cumulative flux of particles acting on the spacecraft following the orbit with a low perihelion during the period is calculated. These results suggest that the impacts of dust particles with mass > 10-6 g are rather rare events. Thus, the main damage to the surface of thermal protection shield cause the impacts of grains whose mass is ranging between 10-16 and 10-6 g, moving in the opposite direction of the Sun. A 100 mkm particle with average density of 2.5 g/cm3 (with mass 1.3·10-6 g) moving at 100 km/s will create in solar probe heat shield material a crater of diameter 0.18 cm and depth 0.22 cm. The diameters of craters formed in the spacecraft’s shield material by the collisions with the dust grains with a smaller mass (10-16 <m <10-6 g) will not exceed 2 mm. Due to the small size of the particle the period of high-pressure action is limited by 10-11 — 10-13sec, so the shock wave in the material decays rapidly and the energy transmitted to the material becomes insufficient for evaporation and melting. At some distance from the point of impact only local temperature rise to several hundred K is possible, that has no appreciable effect on the equilibrium temperature of the shield.

Keywords:

spacecraft, Sun exploration, thermal protection, hypervelocity impact, dust particles

References

  1. Kuznetsov V.D. Proekt «Intergeliozond (InterhelioProbe), Tarusa, IZMIRAN, 2011, 192 p.

  2. McComas D.J., Acton L.W., Mewaldt R.A., Guhathakurta M., Lewis W.S. Solar Probe Plus: Report of the Science and Technology Definition Team, pre-publication version, 2008, 167 p.

  3. McComas D.J., Acton L.W., Balat-Pichelin M., Bothmer V., Dirling R.B. Solar Probe Plus: Report of the Science and Technology Definition Team, National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, Maryland, 2008, 119 p.

  4. Solar Probe Thermal Protection System Risk Mitigation Study: FY 2006 Final Report, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, 2006, 129 p.

  5. Kerley G.I. Equation of state and constitutive models for numerical simulations of dust impacts on the Solar Probe: Report on contract 949182, Johns Hopkins University, Applied Physics Laboratory, Laurel, Maryland, 2009, 85 p.

  6. Konstantinov M.S., Min Thein. Elektronnyi zhurnal «Trudy MAI», 2013, no. 67, available at: http://www.mai.ru/science/trudy/eng/published.php?ID=41510 (accessed 26.08.2013)

  7. Konstantinov M.S., Min Thein. Elektronnyi zhurnal «Trudy MAI», 2013, no. 71, available at: http://www.mai.ru/science/trudy/published.php?ID=46802 (accessed 26.12.13)

  8. Grün E. Micrometeoroid data from the first two orbits of Helios 1, J. Geophys., 1977, no. 42, pp. 717-726.

  9. Grün E. Galileo and Ulysses dust measurements: from Venus to Jupiter, Geoph. Res. Lett., 1992, vol. 19, no. 12, pp. 1311-1314.

  10. Altobelli N., Grün E. and Landgraf M. A new look into the Helios dust experiment data: presence of interstellar dust inside the Earth’s orbit, Astronomy and Astrophysics, 2006, 448, pp. 243–252.

  11. Lasue J., Levasseur-Regourd A.C., Fray N. and Cottin H. Inferring the interplanetary dust properties from remote observations and simulations, Astronomy and Astrophysics, 473, 2007, pp. 641–649.

  12. Kimura H. and Mann I. Brightness of the solar F-corona, Earth Planets Space, 50, 1998, pp. 493–499.

  13. Mann I. Dust near the sun. Space Sci. Rev., 2004, 110, pp. 269–305.

  14. Carrasco C., Eng D., Potocki K., Mann I. Preliminary dust-impact risk study for the ‘‘Solar Probe’’ spacecraft, International Journal of Impact Engineering, 33, 2006, pp. 133–142.

  15. Ishimoto H. Collisional evolution and the resulting mass distribution of interplanetary dust, Earth Planets Space, 50, 1998, pp. 521–529.

  16. Panasyuk M.I., Novikov L.S. Model’ kosmosa. Vozdeistvie kosmicheskoi sredy na materialy i oborudovanie kosmicheskikh apparatov (Model of Space: Effect of the Space Environment on Spacecraft Materials and Equipment), Moscow, KDU, 2007, 1144 p.

  17. Grün E., Staubach P., Baguhl M., Hamilton D. P., Zook H. A. South—North and Radial Traverses through the Interplanetary Dust Cloud, Icarus 129, 1997, pp. 270–288.

  18. Nesvorn D., Jenniskens P., Levison H. F., Bottke W. F., Vokrouhlick D. and Gounelle M. Cometary origin of the zodiacal cloud and carbonaceous micrometeorites implications for hot debris disks, The Astrophysical Journal, 2010, no. 2, pр. 816–836.

  19. Anisimov C.I., Bushman A.V., Kanel’ G.I., Konstantinov A.B., Sagdeev R.Z., Sugak S.G., Fortov V.E. Pis’ma v zhurnal eksperimental’noi i teoreticheskoi fiziki, 1984, vol. 39, no. 1. pp. 9-12.

  20. Anisimov S.I., Demidov B.A., Rudakov L.I., Sagdeev R.Z., Fortov V.E. Pis’ma v zhurnal eksperimental’noi i teoreticheskoi fiziki, 1985, vol. 41, no. 11, pp. 554-557.

  21. Agureikin V.A., Anisimov S.I., Bushman A.V., Kanel’ G.I., Karyagin V.P., Konstantinov A.B., Kryukov B.P., Minin V.F., Razorenov S.V., Sagdeev R.Z., Sugak S.G., Fortov V.E., Teplofizika vysokikh temperatur, 1984, vol. 22, no. 5, pp. 761-778.

  22. Alifanov О. М., Ivanov N. A., Kolesnikov V. A., Mednov A. G. Vestnik Moskovskogo aviatsionnogo instituta, 2009, vol. 16, no. 5. pp. 247-254.

  23. Alifanov O. M., Cherepanov V. V. Vestnik Moskovskogo aviatsionnogo instituta, 2010, vol. 17, no. 4. pp. 48-57.

  24. Anisimov S.I., Karyagin V.P., Kovtunenko V.M., Konstantinov A.B., Kremnev R.S., Kudryashov V.A., Osip’yan Yu.A., Ryzhov Yu.A., Svirshchevskii S.B., Strukov A.Z., Terterashvili A.V., Fortov V.E., Kosmicheskie issledovaniya, 1987, vol. 25 no. 6, pp. 671-676.

  25. Iyer K. A., Mehoke D. S., Batra R. C. Interplanetary Dust Particle Shielding Capability of Spacecraft Multilayer Insulation, Journal of spacecraft and rockets, vol. 52, no. 2, 2015. — pp. 584-594.

  26. Vaisberg O.L., Smirnov V.N., Gorn L.S., Iovlev M.V. Kosmicheskie issledovaniya, 1987, vol. 25, no. 6, С. 867 — 883.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход